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Abstract—We investigate the implications of the ubiquity of personal mobile devices and reveal new techniques for compromising the

privacy of users typing on virtual keyboards. Specifically, we show that so-called compromising reflections (in, for example, a victim’s

sunglasses) of a device’s screen are sufficient to enable automated reconstruction, from video, of text typed on a virtual keyboard.

Through the use of advanced computer vision and machine learning techniques, we are able to operate under extremely realistic threat

models, in real-world operating conditions, which are far beyond the range of more traditional OCR-based attacks. In particular, our

system does not require expensive and bulky telescopic lenses: rather, we make use of off-the-shelf, handheld video cameras. In

addition, we make no limiting assumptions about the motion of the phone or of the camera, nor the typing style of the user, and are able

to reconstruct accurate transcripts of recorded input, even when using footage captured in challenging environments (e.g., on a moving

bus). To further underscore the extent of this threat, our system is able to achieve accurate results even at very large distances—up to

61 m for direct surveillance, and 12 m for sunglass reflections. We believe these results highlight the importance of adjusting privacy

expectations in response to emerging technologies.

Index Terms—Privacy, security, side-channel attack, human factors, compromising emanations, mobile devices
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1 INTRODUCTION

THE ability to obtain information without the owner’s
knowledge or consent is one which has been sought

after throughout human history, and which has been used
to great effect in arenas as diverse as war, politics,
business, and personal relationships. Accordingly, meth-
ods and techniques for compromising—and protecting—
communications and data storage have been studied
extensively. However, the ubiquity of powerful personal
computing devices has changed how we communicate and
store information, providing new possibilities for the
surreptitious observation of private messages and data.
In particular, mobile phones have become omnipresent in
today’s society, and are used on a daily basis by millions
of us to send text messages and e-mails, check bank
balances, search the internet, and even make purchases.
And while some of us may be concerned with—and take
steps to prevent—shoulder-surfing and direct observation
of the text we input into these devices (see Fig. 1), few of
us take notice of the person facing us across the aisle on
our morning bus ride nor consider what our sunglasses
might reveal.

In this work, we show that automated reconstruction of

text typed on a mobile device’s virtual keyboard is possible

via compromising reflections, e.g., those of the phone in the

user’s sunglasses. Such compromising reflections have been

exploited in the past for reconstructing text displayed on a
screen [2], [3] using expensive, high-powered telescopic
lenses. Our approach operates on video recorded by
inexpensive commodity cameras, such as those found in
modern smartphones. The low resolution of these cameras
makes visual analysis difficult, even for humans, and
severely limits the possibility of directly identifying on-
screen text. What makes this threat practical, however, is
that most modern touchscreen smartphones make use of a
virtual keyboard, where users tap keys on-screen. In the
absence of tactile feedback, visual confirmation is typically
provided to the user via a key pop-out effect, as illustrated in
Fig. 1. Note that although the on-screen text is essentially
unreadable, the pop-out event provides a strong visual cue
to help identify the letter that was tapped. The approach we
take in this paper exploits this effect to recover the text
typed by the user, and offers much promise in two real-
world threat models, namely: 1) direct surveillance, wherein
we assume the adversary is able to direct the camera
toward the screen of the mobile device (e.g., over the
victim’s shoulder), and 2) indirect surveillance, wherein the
adversary takes advantage of indirect views of the virtual
keyboard obtained, for example, via “compromising reflec-
tions” of the phone in the victim’s sunglasses. In both cases,
we assume only inexpensive, commodity video cameras,
without any telescopic lenses or high-end equipment. In
addition, we make no limiting assumptions about the
capture setup, the motion of the phone or of the camera, nor
the typing style of the user. Thus, the only input we assume
is a video, captured either directly or indirectly, of a user
typing on a virtual keyboard. We then apply techniques
from computer vision to process the recorded video,
identifying, for each frame, potential keys that were
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pressed. This visual detection, coupled with a language
model, enables us to achieve surprisingly accurate retrieval
results, even under challenging scenarios.

An earlier version of this work was originally presented
in [1]. For the present paper, we demonstrate more
exhaustive results on a wider range of threat scenarios.
One of the questions we explore relates to understanding
the range of scenarios under which our attack is practical;
for instance, given a capture device (e.g., a pocket camera),
from how far away can an attacker effectively eavesdrop on
a victim? We investigate this issue by considering a variety
of capture devices, ranging from compact pocket cameras to
higher-end digital SLRs. In addition, while our original
work focused mainly on recovering complete typed
sentences, we now explore the issue of recovering pass-
words. In other words, we analyze the efficacy of our
system without the language modeling steps, and bench-
mark its accuracy for this task. Finally, we also propose and
investigate an additional attack that uses still images
processed with optical character recognition (OCR) techni-
ques. Our experiments show that while this type of attack is
simpler, and viable under certain operating conditions, it is
still far less robust than the video based approach, which
operates over greater distances.

Our ability to reconstruct text typed on virtual keyboards
from compromising reflections underscores the need to
continually reevaluate our preconceptions of privacy—or
the lack thereof—in modern society. Even cryptography
and secure devices are of little use when, across the aisle,
someone who appears to be reading e-mail on their phone
is in fact surreptitiously recording every character we type.

2 RELATED WORK

By now, it is well understood that electronic, electro-optical
and electromechanical devices give off some form of
unintentional electromagnetic signals that can inadvertently
leak sensitive information. The risks from these so-called
“compromising emanations” were noted over half a century
ago, and led to the introduction of emission-security tests

standards to control leakage from digital electronics [4].
Although the nature of these emissions has changed with
technology, side-channel attacks continue to surface [5], [6],
[7], [8], [9], [10].

More recently, both visual emanations (e.g., from
reflections on curved surfaces of close-by objects such as
tea pots) and acoustic emanations (e.g., from key presses on
a keyboard or from the sounds made by dot-matrix
printers) [11], [12], [13] have been used to undermine the
confidentiality of information displayed or entered into
commodity devices. More closely related is the work of
Backes et al. [2], [3] on “compromising reflections” that
presents eavesdropping techniques for exploiting optical
emanations using telescopic equipment. There, the authors
show that an adversary is able to successfully spy from as
far as 30 meters away and, in certain cases, can even read
large text reflected in the eyeball of the victim. In this work,
we focus on a related but different problem, namely,
exploring the feasibility of automatic generation of tran-
scripts from low resolution, indirect footage captured using
inexpensive, and ubiquitous, consumer electronics.

The work most closely related to ours is that of Maggi
et al. [14], who consider similar automated attacks on
touchscreen devices. However, their work considers only
direct surveillance and lacks any error correction, such as
performed in the edit distance and language modeling
portions of our approach. In addition, Maggi et al. conclude
that reconstruction when both the device and camera are
“jiggled” is infeasible with their system, whereas our
experiments on a moving bus demonstrate the effectiveness
of our approach even under such adverse conditions.

Also germane to this paper is the work of Balzarotti et al.
[15] that explores the idea of automatically reproducing text
from surveillance video—albeit from a camera mounted
directly above a terminal—that captures a user’s typing as
she inputs data at the keyboard. Similar to Balzarotti et al.,
we apply the noisy channel model to help recover
sequences of words from streams of frames with guessed
labels. However, the error model employed by Balzarotti
et al. only accounts for the deletion of identified characters
and the substitution of one character for another. In
contrast, our model allows for insertions, deletions, and
substitutions, with substitutions weighted according to the
distance between the two characters on the keyboard.
Moreover, unlike Balzarotti et al., our frame parsing model
handles spacing, allowing for the insertion and removal of
spaces. An additional challenge in our setting is the need to
overcome significant instability in the captured footage, as
well as operate at a far lower resolution. The instability
comes from the fact that in our case, both the phone and the
camera are free to move and can be positioned arbitrarily
with respect to each other.

A more distantly related problem is that of extracting
captions in broadcast news to provide search metadata for
digital archives. In these works, the low resolution of
characters within the video makes the problem of segment-
ing characters quite challenging, so much so that video OCR
typically does not perform well without significant text
enhancement [16].
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Fig. 1. Example threat scenarios that we investigated. Video was
recorded in both indoor and outdoor environments, using various
consumer video cameras. Top: shoulder surfing. Bottom: reflection
surfing. Observe the key pop-out events in the inset images.



3 OUR APPROACH

Our approach consists of a number of stages (refer Fig. 2),
each a difficult problem requiring the application of
advanced computer vision and machine learning techni-
ques. At a high level, the approach we take can be
summarized via the following steps:

. Stage �1 . We first detect and track the phone across
the frames of a video sequence.

. Stage �2 . We extract distinctive feature points from
the tracked phone region in each frame, which are
used to compute stabilizing image transformations
that compensate for camera and phone motion.

. Stage�3 . The stabilized video frames are also aligned
to a reference image of the phone (obtained, for
instance, from the user manual of the device of
interest).

. Stage �4 . Pop-out events for each key are now
localized to specific regions of the keyboard, and we
train classifiers to detect each key pop-out.

. Stage �5 . To account for missed and spurious
detections, we use a language model to refine the
output of the computer vision modules.

Note that we apply the above steps to both threat models,
i.e., direct surveillance and sunglass reflections. In the latter
case, the images are simply flipped to account for lateral
inversion, and then processed as above. In the following
sections, we discuss each component in more detail.

3.1 Phone Detection and Tracking (Stage �1 )

Given a surveillance video, one of the most basic challenges
we face is in determining the location of the phone in the
video. It is often the case that the phone occupies only a
small spatial region of the image, with the remaining
portion being unrelated background clutter (e.g., the phone
in Fig. 3 only occupies 1.8 percent of the total image area).
Indeed, the visual features on the background are invari-
ably “distracting” for subsequent stages of our approach,
because they vastly outnumber the visual features on the
phone itself. Determining the location of the phone in the
video, thus, enables us to focus specifically on the object of
interest, eliminating all irrelevant background information.

The domains of object detection and object tracking have
received widespread attention in computer vision [17], [18],

[19], [20], [21]. In certain applications, such as frontal-view
face detection, modern techniques are capable of providing
very accurate results. In general, however, object detection
and tracking are still challenging problems, in part due to the
tremendous variability in the appearance of objects when
captured in arbitrary configurations, i.e., from different
angles, distances, and under different lighting conditions.

In this paper, we formulate the tracking problem as one
of binary classification [20], [21], [22]. The intuition is to
train binary classifiers to distinguish the appearance of the
object being tracked from that of the background. This
training is either performed offline (using a dedicated
training phase prior to the tracking algorithm), or online
(where the appearance of the object is learned during the
tracking process). In the former case, tracking is typically
very fast, since the classifiers have been pretrained before-
hand. The latter, while slower, is capable of adapting on-
the-fly to changes in appearance. Since the appearance of
the phone can vary considerably, we elect to perform
online training, learning the appearance of the phone
during tracking.

We base our phone tracker on the techniques proposed
in [19], [20], which describe an online AdaBoost [23] feature
selection algorithm for tracking. At a high level, boosting is a
classification scheme that works by combining a number of
weak learners (e.g., a threshold on a feature value) into a
more accurate ensemble classifier. A weak learner may be
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Fig. 2. Overview of our approach for typed input reconstruction from video.

Fig. 3. Phone tracking. (a) User-selected bounding box highlighting our
positive example for training. (b) In the next frame, the classifier is
evaluated within a search window, and the position of the maximum
response defines the phone’s new location.



thought of as a “rule of thumb” that only has to perform
slightly better than chance—for example, in a binary
classification problem, the error rate must be less than 50
percent. The intuition is that a combination of these “weak”
rules will often be more accurate than any individual rule.
Given a set of training images, where each image is labeled
as positive (containing the phone) or negative (not contain-
ing the phone), we obtain a training set �L ¼ fhx1; y1i; . . . ;
hxj�Lj; yj�Ljig, where xi is an m-dimensional feature repre-
senting the ith training image, and yi 2 fþ1;�1g is the
corresponding label. As suggested by Grabner et al. [19], we
use three types of features, concatenated to form the vector
xi: Haar features [18], orientation histograms [24], and local
binary patterns [25].

Initially, each training example is given a uniform weight
pðxiÞ ¼ 1=j�Lj. During the first round of training, we select a
weak learner that has the lowest weighted classification
error, given �L and pðxÞ, and add it to our ensemble.
Following this, the weights pðxiÞ of the misclassified
training examples are increased, while the weights of the
correctly classified samples are decreased. At each subse-
quent training iteration, we select a weak learner hi that
does well on the training examples that were hard for the
previous weak learners. The final ensemble classifier is
computed as a linear combination of the selected weak
learners, with the weight of each learner being proportional
to its accuracy.

The online boosting variant assumes that one training
example is available (for instance, by drawing a bounding
box in the first video frame). This image region becomes the
positive training sample, and negative examples are
extracted from the surrounding background regions. Given
this data, multiple training iterations of the online boosting
algorithm are performed as above. In the next frame, the
ensemble classifier is evaluated at a number of possible
image locations (e.g., in a search window surrounding the
object’s position in the first frame), with each location being
assigned a confidence value. The target window is then
shifted to the new location of the maxima, and the classifier
is updated using new training examples so as to become
discriminative to variable object/background appearance.
The operation of the tracker is illustrated in Fig. 3. The
output of this module is the phone’s location in each frame,
allowing all further processing steps to focus on the phone.

3.2 Phone Stabilization (Stage �2 )

Given the location of the phone in each frame, the next step
is to compensate for the effects of phone and camera
motion. As discussed earlier, we do not impose any
constraints on the motion of either the camera or the user.
While this enables us to operate in a wide range of real-
world threat scenarios, it also results in a tremendous
degree of variation in the appearance of the phone within
each frame. Explicitly compensating for this motion would
allow us to effectively reduce one dimension of variability,
resulting in a more “stable” set of images to work with.

Before presenting the details of our stabilization
algorithm, we introduce the notion of a homography [26].
In computer vision parlance, a homography is a 2D
projective transformation that relates two images of the
same planar surface (in our setting, the phone represents a

(mostly) rigid, planar object). The images that we
capture—specifically, the portions of the image that
contain the phone—are, thus, related to each other via a
2D homography. Note that in the case of reflections, the
image of the phone can be distorted due to the curvature
of the sunglasses. We do not explicitly model this
distortion in the current system, but rather assume that
the sunglasses are approximately locally planar. Since the
phone occupies only a small area of the sunglasses, this
approximation proves to be sufficient.

The 2D homography has a number of important practical
applications, one of which is image stabilization. In
particular, if we were given access to the homography H

between a pair of neighboring video frames, then we could
warp them into alignment, thus removing the effects of
phone and camera motion. In short, the basic idea is to
compute pairwise homographies between the video frames,
chaining them together to align all phones in the frames to a
common reference frame. The problem now reduces to that
of automatically determining the transformation H, given
two neighboring images It and Itþ1.

The approach we take involves two key steps. In our
feature extraction and matching step, we extract stable,
repeatable, and distinctive feature points in the two images,
with the intuition being that we would like to identify
matching points in the captured images that correspond to
the same 3D point on the phone. For this, we use the Scale
Invariant Feature Transform, or SIFT [27]. Each SIFT feature
consists of a 2D image location, scale, orientation vector,
and a 128-dimensional feature descriptor that represents a
histogram of gradient orientations centered around the
extracted feature. The main point is that a pair of features in
two images that correspond to the same point in 3D space
will have similar SIFT descriptors. The popularity of SIFT
stems from its ability to tolerate a wide range of scale and
illumination changes, as well some degree of viewpoint
variation. For this task, we use a fast in-house GPU
implementation of SIFT,1 running at �12 frames per second
on a standard graphics card.

For our robust homography estimation step, we compute
the homography H from N “true” feature matches between
the two images using the normalized Direct Linear
Transformation (DLT) algorithm [26]. One limitation here,
however, is that doing so requires a minimum of N ¼ 4

correct feature matches between the two images. Addition-
ally, the DLT algorithm is sensitive to outliers, or mis-
matched features. To combat this problem, we turn to the
field of robust statistics [28], where the problem of estimating
quantities from data that have been corrupted by noise and
outliers has been well studied. Perhaps the most popular of
these robust estimators is Random Sample Consensus
(RANSAC) [29], which is a randomized, data-driven
approach that is capable of tolerating a high level of data
contamination. In our approach, we apply a fast, real-time
variant of RANSAC, called Adaptive Real-Time Random
Sample Consensus (ARRSAC) [30], which simultaneously
estimates the 2D homography, as well as returning the set
of “true” feature correspondences. The resulting homo-
graphy can then be used to align the phone images together,
thus nullifying the effects of scene and camera motion.
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The two steps outlined above are illustrated in Fig. 4.
Figs. 4a, 4b, and 4c denote the process of SIFT feature
extraction, matching, and robust homography estimation,
respectively. Notice that the incorrect feature matches
present in Fig. 4b are “cleaned up” by ARRSAC, which
selects the set of true correspondences (shown in Fig. 4c)
out of the potential correspondences (Fig. 4b). These true
correspondences are then used to estimate the homogra-
phy between the two frames. Fig. 4d shows the two frames
aligned with respect to each other, and Fig. 4e represents
the pixel-wise difference between the images after align-
ment. In the difference image, dark pixels represent areas
of low image difference, and lighter pixels represent areas
of high difference. Note that the difference image consists
mainly of dark pixels, which is an indication that the
homography-based alignment has accurately aligned the
images to each other.

3.3 Alignment to Reference Image (Stage �3 )

In the previous section, we showed how one could
compensate for the effects of scene and camera motion by
aligning the video frames using a robust homography
estimation procedure. While this results in a stabilized
video, one other aspect of appearance variation that
remains unaccounted for is the relative positioning between
the surveillance camera and the user. Note that we do not
assume that the camera has a clean, frontal view of the
screen of the device; rather, the surveillance camera can
be oriented arbitrarily with respect to the user. We now
reduce the difficulty of our problem further by aligning the
stabilized video to a reference phone image. This image can be
obtained easily, in a number of ways, for example, by taking
a single frontal-view photograph of the phone or using a
photo from a reference manual.

Given a reference image, the process of aligning the
stabilized video to this reference image can be carried out in
much the same way as before; that is, by detecting features
in the reference image and the video frames, matching
them, and computing a robust homography estimate that

can then be used to warp all the video frames to the

reference. In principle, we actually need to align only a

single video frame to the reference image, because the

frames of the video sequence have already been aligned to

each other by pairwise homographies. More specifically, let

Hjþ1;j be the homography that transforms video frame Ijþ1

to frame Ij. Assuming that I1 denotes the first frame, the

transformation between Ijþ1 and I1 can be computed by

chaining together all previous pairwise transformations:

Hjþ1;1 ¼
Yj

k¼1

Hkþ1;k: ð1Þ

In theory, given a single transformation H1;ref that aligns

frame I1 to the reference image Iref , then by extension, one

can align the entire video to the reference image. However,

because the transformations are chained together, even a

small error in the estimation of homography Hjþ1;j

propagates to all subsequent transformations. For a reason-

ably long video sequence, this invariably leads to “drift,”

where the alignment progressively deteriorates as more

frames are aligned to the reference image.
To combat this effect, we instead perform a more careful

alignment process, depicted in Fig. 5. We begin by aligning

frame I1 to the reference image Iref , via a robust homo-

graphy H1;ref , estimated using the techniques introduced in

Section 3.2. We then align subsequent frames of video by

chaining together pairwise homography transformations—

the difference being that every M frames (M ¼ 50 in our

experiments), we reinitialize our transformation with

respect to the reference image by recomputing the video-

to-reference image homography. We use the newly esti-

mated homography as the base transformation for the next

window of M frames.2 This process of interframe homo-

graphy estimation is much more accurate, as well as far

more efficient, than performing alignment to the reference

image. The reason is that the change in appearance of the

phone between two successive video frames is often very

small, while the change in appearance between the phone

image in a random video frame (captured under arbitrary

pose and lighting conditions) and the reference image is

much larger.
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Fig. 4. Automatic phone stabilization. (a) Two video frames, with
extracted SIFT features displayed on the images. (b) SIFT features are
matched between the two images, to obtain a set of “tentative” point
correspondences, shown in red. (c) ARRSAC-based robust estimation,
which returns a homography, in addition to a set of “true” correspon-
dences, shown in green. (d) The two video frames are aligned using
the computed homography. (e) Pixel-wise difference following image
alignment. Note that the main area of difference is in the vicinity of the
key pop-out.

Fig. 5. Iterative procedure to align video frames to the reference image
(Iref ). To prevent long-term drift, the frames are periodically reinitialized
with respect to the reference image.

2. In particular, we perform a nonlinear minimization of the estimation
error [26] with respect to the reference image. Reinitialization is a common
trick often used in practice to prevent drift. In our case, periodic
reinitialization also helps prevent catastrophic failure in the event of failed
alignments during Stage �2 .



3.4 Key Press Detection (Stage �4 )

Thus far, we have focused primarily on accounting for
sources of appearance variability: phone and camera
motion and the spatial relationships between the user and
the surveillance system. The net effect of the operations
performed thus far is to convert an arbitrary, free-form
video sequence into one that has been aligned to a stable,
known reference frame. There is a significant advantage to
doing so: By aligning the video to a known coordinate
frame, we know precisely which regions to inspect to find
key pop-out events. More specifically, once the video
frames have been aligned to the reference image, we can
isolate the key pop-out event of each key on the virtual
keypad to a specific spatial location (derived, e.g., by
overlaying 2D boxes on the reference image).

Although we have greatly simplified the problem, we are
still faced with challenges. For one, because we are
operating at a fairly low resolution, coupled with the fact
that the appearance of the keys is often “blurred out,” one
cannot readily apply OCR techniques to recover the
characters in the isolated frames. Moreover, in several cases
the pop-out events are occluded. Yet another complication
is that the 2D boxes constituting the keypad grid are
overlapping—in other words, the key pop-out events for
neighboring keys have a nonnegligible area of overlap. To
address this, we do not make any final decisions at this
stage; rather, for each frame, we inspect each key location
independently and assign a score to each key, which may be
interpreted as the probability of the key having been
pressed in that frame. These scores, along with their key
labels, are then used in the final stage.

3.4.1 Training a Key Press Classifier

The basic idea we use to identify key press events is to
exploit the fact that we have a known, regular grid and to
train a binary classifier for each key on the keypad. The
classifier for each key focuses on a specific bounding box on
the reference keypad, and aims to distinguish between a
key pop-out event and the “background.” We again make
use of AdaBoost classifiers, introduced in Section 3.1, to
perform this classification. In addition, because we have
explicitly compensated for multiple sources of appearance
variation, we can, at this stage, use an offline training
procedure to have a classifier that is capable of rapid
classification when processing each frame of video. Since
we are operating on small sections of images, known as
patches, and some illumination variation remains, we use
dense SIFT descriptors as the features for each patch (i.e., a
SIFT descriptor is extracted for each pixel in the patch, and
concatenated to form a feature vector).

For each key on the keypad, we train a binary classifier,
by providing positive and negative examples of key pop-
out events. This data are obtained by running a representa-
tive collection of 10 training videos through Stages �1 -�3 ,
subsequently labeling each aligned frame with the key
pressed for the frame. For example, to detect the tapping of
the letter “C,” we extract a positive training patch from the
2D box corresponding to that letter, and negative patches
for all other letters, at their respective locations. On average,
we obtain 200 positive exemplars and 1,000 negative
exemplars for each key. Each classifier is then trained
offline using the acquired samples.

3.4.2 On Detecting Keyboard Layout Mode

While the above discussion focuses primarily on the
alphabet keys, the same principles apply for special
characters and numbers. On a smartphone, there is usually
a special key that allows one to toggle between alphabet
and numeric/special character mode. There are a couple of
strategies one could adopt to detect keyboard toggle: 1) train
a classifier that inspects the entire keyboard area to detect
when the keyboard layout has been toggled, and then
use the classifiers for the appropriate keys in each layout or
2) at each key pop-out location, run the classifiers for all
keys that could potentially pop out at that location, and
select the classifier that yields the highest score. In this
work, we chose to pursue the latter option, and have used
that approach to successfully detect numbers and special
characters interspersed with alphabet characters.

3.4.3 Testing the Classifier

Given a test video, and a pool of trained key press
classifiers, we run the test video through Stages �1 -�3 .
Then, for every frame of video, each classifier inspects its
respective image patch and outputs a classification score
(the probability of that key having been pressed in the
frame). We reject detections that score less than 0.5. Note
that each classifier is run independently, and so there could
potentially be multiple keys that pass this threshold. For
each frame, we store all potential key labels and scores.
Once a key pops-out on the keypad, it typically stays in this
state for a fixed amount of time (e.g., about 0.25 s on the
iPhone); this fact can be used to parse the detected
sequence of keys to identify character breaks.

The observant reader would have noticed by now that
we have yet to discuss the issue of the “space” bar. On
many popular smartphones we examined (e.g., the
iPhone and NexusOne), there is no pop-out event for
the space bar. However, it is still possible to obtain a
reasonable estimate of the locations of the spaces in typed
text, by performing some straightforward post-hoc analy-
sis. Given a sequence of identified key press events, we
determine the median time interval t between successive
key presses. If we now reinspect our key press detections,
we can label the frames lying between two widely
separated3 key presses as potential space events. Addi-
tionally, the visual classifier we use to determine the space
key event inspects a larger region of the keyboard, with the
intuition being that when users press the space, a large
portion of the keyboard is visible. This is by no means
foolproof: a few spaces may be missed, and false spaces
may be inserted when the user pauses between keystrokes.
However, coupled with an image-based classifier, this
analysis still provides useful information.

3.5 Parsing and Language Modeling (Stage �5 )

Once we have identified key labels for each frame in a
video, along with potential character breaks and spaces, the
issue of identifying typed words still remains. We can view
this task in terms of the noisy channel problem, often
encountered in speech recognition: given a sequence of
observations (labeled frames), find the most likely sequence
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of intended words. This process is often referred to as
maximum-likelihood decoding [31].

The noisy channel problem is often formulated in a
Bayesian framework. Let P ðw j oÞ represent the probability
of a word sequence w given an observation sequence o. The
decoding problem is that of finding ŵ ¼ argmaxwP ðw j oÞ.
Using Bayes’ rule, this can be reformulated as

ŵ ¼ argmax
w

P ðo j wÞP ðwÞ

P ðoÞ
¼ argmax

w
P ðo j wÞP ðwÞ;

where P ðo j wÞ represents the probability of observing a
sequence o given that the sequence w was intended. The
prior P ðwÞ represents the probability of observing word
sequence w in the language of interest. The denominator
can be safely omitted as it does not depend on w.

To solve the noisy channel decoding problem, speech
recognition systems have long employed cascades of compo-
nent models, where each model represents one conceptual
stage in the task of transcribing speech. For instance, one
such cascade might consist of three models: 1) an acoustic
model, which transforms an acoustic signal into component
sounds, 2) a pronunciation model, which converts sequences
of sounds to individual words, and 3) a language model,
which governs the combination of words into phrases and
sentences. In this case, P ðwÞ represents the language model.
The likelihood P ðo j wÞ can be further decomposed into
submodels, such as the acoustic and pronunciation models,
representing intermediate stages. Commonly, these sub-
models are assumed to be independent.

We draw on a large body of work on speech recognition
cascades that has proven to be very useful in our context.
However, in traditional speech recognition systems, the
interaction between components often cannot be modeled
explicitly, i.e., each step is performed independently.
Pereira and Riley [32] proposed an elegant solution to this
problem, representing each model and submodel as a
weighted finite-state transducer (WFST), thereby allowing for
decoding to range over the entire cascade simultaneously. A
finite-state transducer is a finite-state machine with both an
input and an output tape and, thus, represents a mapping
between sequences from two alphabets; applying weights
to each arc then allows for scoring each path through the
transducer. A finite-state acceptor can be viewed as the
special case, where the input and output tapes are identical.
Many of the traditional components of speech recognition
systems can be represented as WFSTs, including n-gram
language models, pronunciation dictionaries, and Hidden
Markov models (HMMs). HMMs are themselves one
method of approximating solutions to the noisy-channel
decoding problem; however, the WFST framework can not
only duplicate the functionality of an HMM-based ap-
proach but also streamlines the construction of a recogni-
tion cascade by allowing for different component models
with a uniform representation. By representing system
components uniformly as WFSTs, we take advantage of the
fact that multiple finite-state automata can be combined in
various ways: for example, a speech recognition cascade can
be represented as the composition of individual transducers
for each stage. The resulting cascade can then be composed
with an acceptor representing an input sequence, which
transforms the decoding problem into that of finding the
shortest path through the WFST.

In what follows, we apply WFSTs to solve the noisy
channel decoding problem in a manner similar to that of
speech recognition cascades. That is, we utilize a language
model and define a number of component models which,
when combined, provide a probabilistic mapping from
frame label sequences to word sequences. More specifically,
we first apply a frame parsing model, F , which maps
sequences of frame labels to character strings. We then
apply an edit distance model, E, which maps each character
string to a (weighted) set of similar character strings and
helps account for errors made by the typist, the recognition
algorithm, and the frame parser. Next, a dictionary model D
is applied, discarding those paths resulting in invalid
words. Finally, the language model L is applied, accounting
for unlikely words and sequences of words in English.

Each component model is represented as a weighted
finite-state machine, and the application of each is
performed by composition. The resulting cascade WFST
is then composed with the input sequence, represented as
acceptor I , resulting in a weighted transducer that maps
from the input sequence to word sequences. We then search
this transducer for the shortest path, which corresponds to
the most likely sequence of words given the input sequence.
We use the OpenFST library4 to construct, combine,
optimize, and search our model cascade.

The frame parsing WFST (Fig. 6) allows for character
break and space insertion as well as frame, break, and space
deletion and is parametrized by weights on each of these
actions. Each path starts at the zero state, representing the
beginning of the frame label sequence. Upon encountering a
frame labeled with a character, a transition is made to a
character-dependent state (A or B, in this example) and that
character is output. Subsequent frames with the same label
are ignored freely, while those with a different character
label are dropped with a penalty. In a typical path, once a
character break appears in the frame stream, the transition
back to the start state is made, from which the string can
end or a new character can begin. Thus, an input stream
“AA|BB” would be output as “A|B” in a typical path.
Other paths are possible, however, which insert or drop
characters breaks and spaces with certain penalties; the
same input would also generate, among other outputs, “A”
and “A|A|B,” albeit with a lower probability.

Our edit distance is based on the distance between keys
on the keyboard and is intended to correct any misclassi-
fications by the recognition algorithm. It can also auto-
matically correct typing mistakes. The distance between
two characters is straightforward. If both keys are in the
same row, then the distance is the number of keys between
them. If the keys are not in the same row, we calculate the
distance as though they were in the same row (with rows
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Fig. 6. Simplified frame parsing WFST, with only two characters, that
maps a sequence of labeled frames to characters.



aligned on the left-hand edge) and apply a multiplicative
penalty for each row the two keys are apart. This distance is
then normalized to be between zero and one; we take the
additive inverse to obtain a probability estimate, which is
weighted with a parameter. Similarly, the insertion and
deletion costs are represented as probabilities and weighted
with parameters, which allow for tuning the effects of the
edit distance on the overall cascade. For efficiency, we limit
the number of contiguous edits to 2.

A simplified view of the edit distance WFST appears in
Fig. 7. For the edit distance WFST, the most likely path is a
loop in the start state, in which case the output string is
identical to the input string. However, an edit (substitution,
insertion, or deletion) can be made, with a penalty, at any
position in a word, resulting in a path which transitions to
state 1; a second edit can then be made, transitioning to
state 2. From either of these states, a match—or the end of a
word—is required to return to the zero state, which limits to
2 the number of edits that can be made in a row.

The dictionary used is based on the medium-sized word
list from the Spell Checker Oriented Word Lists (SCOWL),5

from which we removed roman numerals and the more
obscure abbreviations and proper nouns. Finally, the
language model used is a unigram model, i.e., simple word
frequencies, trained on the well-known Brown corpus [33].

4 EVALUATION

4.1 Evaluating Output Quality

We now turn our attention to how we measure the quality
of the reconstructions produced by our system. The
problem we face here is similar to that found in both the
automated speech recognition and machine translation
(MT) communities. One common metric used in these
domains is the word error rate (WER). The WER of a
transcription is based on the normalized Levenshtein edit
distance between the hypothesis and the reference, where
the basic unit of comparison is the word. While WER has
been used historically for many tasks, it has several failings
[34] that make it ill-suited for our goals. Consider four
hypotheses for the phrase “the art of war”:

1. the art war,
2. the art of painting,
3. the art of of war, and
4. art of war.

Each of these hypotheses has exactly the same WER (1/4),
even though they are quite different in quality, particularly
as it relates to human understanding: notice that the last
two sentences convey the appropriate meaning, while the
first two do not.

For more appropriate metrics, we turn to the MT
community, which has addressed many of the challenges
associated with scoring the output of such systems [35],
[36]. While humans are the target audience for MT systems
(and thus the ultimate arbiters of output quality), evalua-
tions using human judges pose several obstacles; for
example, using experts can be prohibitively expensive and
time consuming; conversely, hiring nonexperts leads to
issues with reliability and inconsistency. Automated eva-
luation, on the other hand, allows system designers to
quickly test new ideas while providing a consistent basis for
comparing multiple approaches. Ideally, such automated
evaluations would produce results similar to human
experts, who typically assess the adequacy, or how well the
appropriate meaning is conveyed, and fluency of a transla-
tion. Similarly, state-of-the-art automated MT evaluation
techniques score a hypothesis (i.e., the MT) by comparing it
with one or more reference (i.e., expert) translations. The
performance of these automated techniques is judged
according to how well the assigned scores correlate with
those assigned by experts.

4.1.1 Scoring Our Inferences

Before proceeding further, we note that automated MT
evaluation remains an area of active research, with entire
conferences dedicated to the topic. Nevertheless, one
widely adopted metric for producing scores at the segment
level is the Metric for Evaluation of Translation with
Explicit ORdering (METEOR) [37]. METEOR accounts for
position-independent matching of words (i.e., to model
adequacy) and differences in word order (i.e., to model
fluency). More specifically, the METEOR metric is the
combination of a weighted f-score and a fragmentation
penalty. The f-score is defined as the harmonic mean of
unigram precision p and recall r. In this context, precision is
the ratio of the number of (nonunique) words that occur in
both the reference and the hypothesis to the total number of
(nonunique) words in the hypothesis. Recall is the ratio of
the number of words present in both hypothesis and
reference to the number of words in the reference.

Denkowski and Lavie [38] have extensively explored
the space of tunable parameters, and have identified
different sets of values that correlate well with human
evaluations on different tasks; we use the Human-Targeted
Edit Rate parameter set with synonym matching disabled.
As a guideline for METEOR scores, Lavie [39] suggests
that scores of 0.5 and higher indicate understandable
hypotheses, while scores of 0.7 and higher indicate good
or fluent hypotheses.

4.2 Results

4.2.1 Experiment #1: Full System Analysis

Recall that our primary goal is to explore the feasibility of
exploiting compromising reflections using low-cost con-
sumer devices, and to impose very few constraints on the
capture environment. Toward this end, our first experi-
ment uses capture devices ranging from low cost, hand-
held devices (Kodak PlayTouch and Sanyo VPC-CG20,
costing $90 and $140, respectively) to mid-range consumer
grade cameras (a Canon VIXIA HG21 Camcorder, retailing
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Fig. 7. Simplified edit distance WFST mapping sequences of characters
to similar sequences.

5. http://wordlist.sourceforge.net.



for about $1,000). Note that these devices have small form
factors (see Fig. 9), thus allowing for unobtrusive capture in
real-world settings. Our capture settings for this experi-
ment cover both static and dynamic camera positioning,
ranging from cameras mounted near the ceiling of an
indoor office environment, to hand-held capture performed
outdoors—for example, we recorded video footage at a bus
stop as well as on a moving bus. In the indoor setup, the
distance between the user and the camera was approxi-
mately 4.5 meters, while the outdoor capture was done at
distances ranging from 1.2-2.2 meters (for instance, looking
over a person’s shoulder while sitting on a bus). At these
distances, the pixel dimensions of the phone in the
captured video ranged from about 49� 75 to 114� 149

(width� height). While low resolution is in itself often
problematic for computer vision systems, these data sets
present numerous other challenges: unstable video, motion
blur, reflections from other objects, and so on.6 In total, we
collected 18 videos (containing 39 sentences) from 10 dif-
ferent users typing on the iPhone. Our experiments
covered a number of practical use-cases designed to elicit
a variety of typing styles (and speeds), and includes
scenarios, where subjects 1) typed short passages of text
from The Art of War and David Kahn’s The Codebreakers,
2) simply typed whatever came to mind, and 3) typed
responses to text messages (e.g., “What time shall we meet?”)
sent to the phone. In each case, subjects were instructed to
use the phone as they normally would. All subjects
routinely use smartphones.

We evaluate our system at two levels: the sentence (or
segment) level, and the system level. In the former case, we
are interested in the ability of our system to reconstruct
appropriate transcripts of individual sentences. This is
particularly important as it allows an attacker to have
confidence in the output of the system for individual
sentences. The latter case provides a characterization of our
system’s performance as a whole.

Sentence-level accuracy. A boxplot of the METEOR scores
for our reconstructions of the sentences typed in our
collected videos is provided in Fig. 8a. Notice that in both
the direct and indirect cases, more than 35 percent (8/23
and 6/16, respectively) of our hypotheses achieve perfect
scores, and none score below the 0.5 threshold representing
“understandable” translations. We provide a few examples

of our hypothesized transcripts in Table 1, where we also
list the input as actually typed by the user and the reference
text used for scoring.

System-Level Analysis. Interestingly, while the basic unit
for comparison is the segment or sentence, it is also
instructive to consider evaluations at the level of entire
corpora of documents, i.e., the system level. System-level
analysis offers a different perspective and, in particular,
smooths the dependency of the scoring on the length of the
sentence. For instance, even a single mistake in a short
sentence can lead to a relatively low METEOR score, as in
Table 1 (Sentence 3). System-level analysis does not depend
as strongly on the length of individual sentences and can
therefore alleviate this issue to some extent. The formulas
are the same as at the sentence-level, but instead, 1) the
system-level precision is calculated as the ratio of the sum
of the counts of matched words over all sentences to the
total number of words over all hypothesis sentences, and
2) the fragmentation penalty is calculated based on the total
number of contiguous subsequences and unigram matches
over all sentences. To better judge how well the system-
level scores generalize, we also provide confidence intervals
based on bootstrap resampling, a common statistical techni-
que for estimating the distribution of a quantity, which
consists of sampling (with replacement) from the set used to
derive a statistic and calculating a bootstrap statistic based on
the new sample. This process is repeated many times,
resulting in an empirical distribution over the statistic of
interest. For direct surveillance, we achieve a system-level
METEOR score of 0.89, with a bootstrapped 95 percent
confidence interval of ½0:84; 0:93�. In the indirect surveil-
lance case, we achieve a lower, yet still respectable, system
score of 0.77, with a bootstrapped 95 percent confidence
interval of ½0:70; 0:86�.

Impact of input resolution. To gain a deeper understanding
of the influence of the various input resolutions (of the
phone’s screen) on our ability to reconstruct the typed text,
we plot the area (in pixels) of each input, against the
ultimate METEOR score (Fig. 8b). The figure shows no
correlation, as evidenced by a correlation coefficient
(Pearsons’s r-value) of 0.07. This indicates that our system
performs robustly over a wide range of input resolutions.

Operating range. Finally, one of our goals in this work is
to gain an understanding of the range of scenarios under
which this kind of attack is practical. For instance, should
you be concerned about someone sitting across the aisle
from you on a bus, equipped with a low-cost hand held
camera? What about an attacker standing on the second
floor of a building, recording people through a window?
Stated differently: How sophisticated (or expensive) does a
capture device need to be, to operate under realistic threat
models in real-world operating conditions?

To answer these questions, we “stress-tested” our
system on a range of devices: a pocket camera (Kodak
PlayTouch), mini camcorder (Sanyo Xacti), point-and-shoot
(Nikon Coolpix s9100), HD camcorder (Canon Vixia HG21),
and a mid-range digital SLR with a zoom lens (Canon EOS
60D with a 100-400-mm lens) (see Fig. 9(bottom)). These
devices were selected to cover a range of form-factors,
prices, and levels of optical zoom. For each device, we
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Fig. 8. (a) METEOR scores for direct surveillance and sunglass
reflections, with the number of sentences listed in parentheses. (b) Plot
of input area (i.e., image resolution) versus METEOR scores.



estimated the maximum distance at which we could
capture video and still be able to accurately reconstruct
the typed text; more specifically, we determine, for each
device, the distance at which the METEOR score of our
system drops below the 0.5 threshold of being “under-
standable”. The results for this experiment are illustrated in
Fig. 9, which shows the case of direct surveillance (top) as
well as sunglass reflections (middle).

The main takeaway from these figures is that for both
direct and indirect threat models, very low cost, small form-
factor capture devices are sufficient to enable accurate
reconstruction of typed text under realistic settings. For the
direct case, for instance, note that even simple pocket
cameras are capable of operating at approximately 3 meters,
which is a very realistic setting for a shoulder-surfing
attack. The corresponding range for the case of sunglass
reflections is lower, because the size of the phone in a
reflection is much smaller. Thus, for this case, while the
lowest class of device (i.e., a pocket camera) is relatively
impractical, a simple point-and-shoot camera can be used
from about 2.5 meters away—a distance that may not be
noticed by an unobservant victim.

Of course, an attacker with a larger budget can use

higher end devices—such as an SLR camera with a zoom

lens—which enables eavesdropping at much larger dis-

tances. For the direct case, we were able to achieve accurate

results at distances of �61 meters, which could now

represent a hypothetical attacker standing on an upper

floor of a building and recording people through a window

(as in Fig. 1). The range for sunglass reflections is again

lower, but still very realistic; when using an SLR camera, we

achieved a maximum distance of �12 meters.

4.2.2 Experiment #2: Isolated Word-Unit Matching

Next, we consider a more specific scenario, where an

adversary might not wish to apply the dictionary matching

and language modeling stages. One such example is the case

of recovering passwords, which are often nondictionary

strings, with numbers and special characters. In this context,

it would, thus, be informative to analyze the raw accuracy of

our system without the language modeling steps.
For this experiment, we provided users with randomly

sampled passwords from the Sony BMG Netherlands
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Fig. 9. Operating ranges for five different capture devices. Top: Direct surveillance. Middle: Sunglass reflections. Bottom: Cameras used, along with
their approximate price (as of June 2012). For each device, we determine the maximum distance at which we can capture video that would then be
successfully processed by our system (where “successful” is defined by a METEOR score >0.5).

TABLE 1
Example Hypotheses from Our Reconstruction Process

Under “Scenario” is given the details of the capture scenario for each hypothesis, including camera type and phone image resolution. Note that
Sentence 2 was captured on a bus.



database,7 and used the Canon VIXIA HG21 video camera
to capture a total of 10 surveillance videos, including both
direct and indirect threat models, using the same capture
settings as in Experiment 1 (Section 4.2.1). We ran each
recorded video stream through our system, but did not
apply the edit distance, dictionary matching and language
modeling stages. In other words, the WFST in Stage �5 of
our system now consists of only the frame parser module.

For this experiment, the passwords we used consisted of
a combination of letters, numbers, and special characters
(for instance, “des8gn@H”). Most on-screen keyboards have
an option to toggle the keyboard layout between alphabets
and numbers/special characters. As noted in Section 3.4,
there are various ways in which this scenario can be
addressed in our system. We choose a simple strategy in
this work: we simply train classifiers for each key on each
keyboard mode as before, and when running the classifiers
on a test frame, we output the key (across all keyboard
modes), which gathered the strongest response. In other
words, this simple approach relies on the hypothesis that
often, for a specific pop-out location on the keyboard, the
keys in the various keyboard modes are sufficiently
different in appearance in order for the classifier to tell
them apart.

In terms of evaluation, note that for this experiment, the
METEOR score is not well suited to evaluating accuracy,
because we are interested in the ability to reconstruct
isolated word units, i.e., sequences of contiguous nonspace
characters, rather than phrases. For this reason, we record
precision and recall scores, based on the number of
password characters that match between what was actually
typed, and our reconstructed text. For the 10 passwords
tested in this experiment, we achieved an average precision
of 0.97, with an average recall of 0.92. In the context of
recovering passwords, these high precision/recall scores
imply that the search space for any subsequent algorithm is
significantly reduced [40], thus making it much easier for an
attacker to accurately recover passwords.

As an additional experiment, we can also perform the
same word-unit-based analysis on the data sets captured
for Experiment #1. In other words, we can process the same
sets of sentences as in Experiment #1, but without the
application of edit distance, dictionary, or language
models. In this analysis, we achieve precision and recall,
respectively, of 0.75 and 0.78 for direct surveillance and
0.64 and 0.65 for indirect surveillance—in all cases, the
accuracy is high enough to recover more than half of any
typed words. In addition, our single-character precision
and recall scores are 94 and 98 percent, respectively, in the
direct case, and 92 and 97 percent in the indirect case—-
again demonstrating that our system is certainly accurate
enough for password guessing, particularly given that we
have a reasonable prior distribution over characters to
drive password space exploration.

4.2.3 Experiment #3: OCR

While our main focus in this work has been to exploit the
“pop-out” characteristics of on-screen keyboards via a
video stream of the typing activity, it is worth comparing

our video-based attack against an alternate, and perhaps
more obvious, attack: using OCR techniques to directly read
the text displayed on the screen of the devices. This
alternate attack has some notable advantages: 1) It does
not require the capture of video sequences; rather, a single
still image of the screen would be sufficient to reconstruct
the displayed text; and 2) capturing a still image typically
yields a higher resolution image than a video recording;
thus, for example, it might be possible to use digital SLR
cameras coupled with zoom lenses, to capture the screen of
the device from a much larger distance. Note that Backes
et al. [2], [3] exploit essentially this kind of attack, using
high-end telescopic lenses to capture reflections of compu-
ter monitors. However, while their work focuses more on
the acquisition of these images, we are more interested in
whether these images can be automatically interpreted using
OCR-based techniques.

As a simple “synthetic” experiment, we first capture a
screenshot of passage of text displayed on the screen of the
device, and downsample the resulting image to mimic
the effect of decreasing resolution (see Table 2, which lists
the resolutions used). Note that this provides the best
possible input to the OCR system—i.e., images with no
camera imaging noise, occlusion, illumination variation, or
perspective distortion. In other words, running an OCR
engine on these synthetic images should provide a baseline
for their accuracy for this task, under the most favorable
operating conditions.

We compare the performance of six OCR engines that are
freely available on the web: OnlineOCR, Google Docs,
FreeOCR, Tesseract OCR, ABBYY FineReader, and Omni-
Page. These engines were selected to be a representative
sample of the current state of the art in OCR. Each of these
engines was run on the synthetic images at a range of
resolutions (see Table 2). Note that the accuracy of even the
best OCR engine drops dramatically for a moderate
reduction in pixel resolution. This suggests that in a practical
capture scenario, the accuracy of the OCR attack will depend
significantly on the size of the phone in the captured images.
Note that the video-based attack does not display this strong
correlation; as shown in Fig. 8b, our attack operates robustly
over a wide range of input resolutions.

To further evaluate the applicability of OCR techniques
under realistic capture conditions, we now capture still
images of the screen of the phone, from a clear, fronto-
parallel viewpoint. It is worth noting that we could also
capture images from an oblique viewpoint and run them
through Stage �3 of our system (alignment to reference
image) to obtain a fronto-parallel image. However, because
our main focus in this experiment is to test the accuracy of
OCR, we opt to directly capture a frontal view. While our
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TABLE 2
Synthetic Results: METEOR Scores for Each
OCR Engine at Varying Image Resolutions

7. See WIRED’s “Sony Hit Yet Again; Consumer Passwords Exposed.”



synthetic experiments involved artificially downsampling
the images, in this case, we now alter the distance between
the phone and the camera to capture this effect. For this
experiment, we used a Canon EOS 60D camera, with the
focal length of the lenses used varying between 70 and
400 mm. This, thus, represents a recording device that
provides very high-resolution (5;184� 3;456) images. For
this experiment, we use the best performing OCR engine
from the synthetic experiments (ABBYY FineReader). A
representative selection of the results are shown in Table 3.

The main take-home message from these results is that
while the OCR attack is indeed simpler, it is viable only up
to a point, beyond which it quickly becomes far too
inaccurate. For the case of direct surveillance, for instance,
using an OCR-based attack, an attacker with a digital SLR
camera and 400-mm zoom lens can be up to 8 m away from
the user and be able to accurately (i.e., with a METEOR
score > 0.5) reconstruct the on-screen text. These results are
far weaker than with our proposed approach, where we
achieve a corresponding maximum distance for direct
surveillance, using exactly the same equipment, of 61 m—
almost 8 times farther than the OCR attack.

The main reason for the relative inaccuracy of OCR is
due to the fact that, particularly at low resolutions, it is often
hard to distinguish between different letters. Some exam-
ples are shown in Fig. 10; these letters were cropped from
one of the videos we recorded for the experiments in
Section 4.2.1. Note that it is difficult, even for humans, to
identify these letters, making it an impossibly hard task for
an OCR engine. The reason our system is able to handle this
case is due to the fact that we do not attempt to recognize
these letters in isolation; rather, we take spatial context into
account. More specifically, because we align each frame of
video, and train a different classifier for each keyboard

location, our system does not ever need to distinguish
between characters. Each trained classifier in Stage �4 only
needs to distinguish between a popped-out letter and its
background, which is a much simpler problem, as shown in
Fig. 11. Stated differently, we transform a 26-class classifica-
tion problem (considering letters a-z) in the case of OCR,
into a 2-class classification problem (that of distinguishing
between a letter and its background). In this sense, our
system can actually be viewed as a highly specialized OCR
system that is able to leverage spatial information, via the
location of the keys on the keyboard, to recognize key
presses. This fact enables us to operate effectively over a
much wider range of distances compared to the OCR attack.

5 SUMMARY AND LIMITATIONS

We explore the feasibility of automatically reconstructing
typed input in low resolution video, of, for example,
compromising reflections, captured in realistic scenarios.
While our results are certainly disconcerting, it is prudent to
note that there are some important issues that remain open.
Low-pixel resolution of the phone image is one of the key
problems we encountered. It can be caused by a variety of
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TABLE 3
OCR Results for Direct Surveillance Using a Digital SLR Camera with Zoom Lens

Fig. 10. Low-resolution images of some characters from the iPhone
keypad. Can you recognize these characters? Note that at these low
resolutions, it is an exceedingly difficult task for humans—let alone
OCR engines—to recognize the character corresponding to each
image. In the absence of additional information, this is the main
reason OCR systems often fail completely when applied to this task.
(Answer: reading left to right, C D G O Q).

Fig. 11. Left: Aligned iPhone keypad, with the “popped-out” letter C
highlighted. Right: Extracted patches, corresponding to positive and
negative training samples for our key-press classifier for the letter C.
Note that this two-class classification problem is much easier to solve
than the problem illustrated in Fig. 10.



factors, including camera aperture, wide angle lenses, and
large effective capture distance. While capturing data on the
bus,we sometimes encounteredmotion blur artifacts, caused
by excessive camera jitter. All of these make the phone’s
appearance so blurry that no reliable features can be
extracted, and so our phone stabilization (Stage �2 ) and
alignment (Stage�3 )methods fail in certain cases.We believe
this could be addressed by using more sophisticated (and
expensive) capture techniques, as in [3], which addresses the
allied problem of capturing clear images from reflections.

Finally, there are potential defenses against the attacks
proposed in this work. One, in the indirect case, is the
application of an antireflective coating, such as is common
on modern eyeglasses, on the reflection surface. Reducing
the brightness of the screen would also have a detrimental
effect on any reconstruction. Finally, one might disable the
visual key press confirmation mechanism that we leverage
in this work. Obviously, our approach is not applicable to
situations where there is no visual key press confirmation.
Hence, devices that lack this effect—for instance, tablets, or
devices that use drag-based input mechanisms (e.g.,
Swype)—are not vulnerable to our attack. How to effec-
tively handle these kinds of devices is an interesting
direction to explore. Lastly, as suggested by Backes et al.
[3], one could use secondary reflections in the environment
when direct line-of-sight to the target is infeasible.

Nevertheless, the fact that we can achieve such high
accuracy underscores the practicality of our attack, and aptly
demonstrates the threats posed by emerging technologies.
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