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USAC: A Universal Framework for Random
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Abstract—A computational problem that arises frequently in computer vision is that of estimating the parameters of a model from
data that has been contaminated by noise and outliers. More generally, any practical system that seeks to estimate quantities from
noisy data measurements must have at its core, some means of dealing with data contamination. The Random Sample Consensus
(RANSAC) algorithm is one of the most popular tools for robust estimation. Recent years have seen an explosion of activity in this area,
leading to the development of a number of techniques that improve upon the efficiency and robustness of the basic RANSAC algorithm.
In this paper, we present a comprehensive overview of recent research in RANSAC-based robust estimation, by analyzing and
comparing various approaches that have been explored over the years. We provide a common context for this analysis by introducing a
new framework for robust estimation, which we call Universal RANSAC (USAC). USAC extends the simple hypothesize-and-verify
structure of standard RANSAC to incorporate a number of important practical and computational considerations. In addition, we
provide a general-purpose C++ software library that implements the USAC framework by leveraging state of the art algorithms for
the various modules. This implementation thus addresses many of the limitations of standard RANSAC within a single unified package.
We benchmark the performance of the algorithm on a large collection of estimation problems. The implementation we provide can be
used by researchers either as a stand-alone tool for robust estimation, or as a benchmark for evaluating new techniques.

Index Terms—RANSAC, robust estimation.
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1 INTRODUCTION
A computational task that arises in a number of application
scenarios is the estimation of model parameters from data that
may be contaminated with measurement noise and, more sig-
nificantly, may contain points that do not conform to the model
being estimated. These points, called outliers, have a dramatic
effect on the estimation process – a non-robust technique, such
as least squares regression, can produce arbitrarily bad model
estimates in the presence of a single outlier. Consequently, the
field of robust estimation has been well studied over the years,
both in the statistics community [1], [2], [3], [4], as well as in
computer vision [5], [6], [7]. A wide variety of algorithms have
been proposed over the past four decades, varying in the degree
of robustness that they provide to outliers, the assumptions
they make about the data and their computational complexity,
amongst other aspects. Of these many algorithms, perhaps the
one that is used most widely, particularly in computer vision,
is Random Sample Consensus, or RANSAC [7].

The RANSAC algorithm is a remarkably simple, yet pow-
erful, technique. One compelling reason for its widespread
adoption, in addition to its simplicity, is the ability of the
algorithm to tolerate a tremendous level of contamination,
providing reliable parameter estimates even when well over
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half the data consists of outliers. However, while robust, the
basic RANSAC algorithm has its drawbacks, impacting its
accuracy, efficiency and stability. Recent years have seen excit-
ing advances in dealing with each of these problems. Indeed,
these improvements in computational efficiency and robustness
have helped drive forward the state of the art, particularly as
the computer vision and robotics communities push towards
more challenging problems on massive real-world datasets
[8], [9], [10], [11], [12] and seek real-time performance [13],
[14], [15], [16]. However, while a number of recent efforts
have focused on addressing issues with RANSAC, relatively
less attention has been paid to a unified review of these
developments. Some recent efforts in this direction are those
of [17], [18], which analyse and compare the performance of
some recent RANSAC variants on a selection of geometric
estimation problems. We seek to extend this idea further. Our
goals in this work are two-fold:

• To present a comprehensive overview of recent research
in RANSAC-based robust estimation, and to provide a
common context within which to study these disparate tech-
niques.To do so, we propose a generalization of the stan-
dard hypothesize-and-verify structure of standard RANSAC,
which we term Universal RANSAC, to emphasize the fact
that most of the important RANSAC variants can be viewed
as special cases of this USAC framework.

• To provide a general-purpose software library that imple-
ments the USAC framework. This implementation draws
from the strengths and collective wisdom of prior methods,
thus addressing many of the limitations of the standard
RANSAC algorithm within a single unified package. The
implementation is modular and can easily be extended to
include other algorithms or their components. We hope that
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this will be of use to researchers as a stand-alone tool for
robust estimation; as a starting point for developing new
RANSAC variants; or as a benchmark for evaluating new
techniques.

2 BACKGROUND

2.1 The Problem
Given a set of measurements U containing N data points,
assume that an a priori unknown fraction ε of these points
is consistent with some underlying model of interest. These
points, or inliers, may be subject to small-scale random
variations, or noise, which arise from imperfections in the
measurement process. The remaining fraction of data points
may be thought of as gross errors that do not conform to
the model of interest, and are termed outliers. The goal of
the robust estimation procedure is to compute the model
parameters corresponding to the inlier population.

2.2 Random Sample Consensus
The RANSAC algorithm was originally proposed by Fischler
and Bolles [7] as a general framework for model fitting
in the presence of outliers. The goal in RANSAC is to
efficiently explore the space of model parameters in order
to maximize some objective function C. RANSAC performs
this maximization in a randomized, data-driven manner. Points
in the parameter space are defined by repeatedly selecting
random subsets of the data points, and generating model
hypotheses from each subset. Each hypothesized model is then
scored using the remaining data points and the hypothesis
that obtains the best score is returned as the solution. The
RANSAC algorithm is outlined in Algorithm 1. Below, we
describe some of the important aspects of the algorithm.

2.2.1 Objective function
In the standard RANSAC formulation, the objective function
C to be maximized is the size of the support for a given
model. More specifically, given a model with parameters θk,
the support is the number of data points from U that have
residual errors smaller than some predefined threshold t. This
set of points is also called the consensus set and RANSAC
attempts to maximize the cardinality of this set. Thus, we have

C =
∑
i

ρ(e2
i ) (1)

where the cost function ρ(.) is defined as

ρ(e2
i ) =

{
1 for e2

i ≤ t2 ,
0 for e2

i > t2 .
(2)

2.2.2 Subset size
In order to maximize the objective function C, RANSAC
operates in a hypothesize-and-verify loop, repeatedly sampling
subsets of the data to hypothesize model parameters, and
then verifying their support against all data points. Each
subset is a minimal sample with size m, defined by the
minimum number of points required to uniquely compute the

model parameters. This marks a departure from traditional
regression techniques, which typically use all the available
data to estimate model parameters; in contrast, RANSAC uses
as little data as possible. The goal in RANSAC is to draw
uncontaminated samples; since the probability of drawing a
contaminated sample increases exponentially with its size, the
size is chosen to be as small as is feasible.

2.2.3 Stopping criterion
It can be shown [7], that in order to ensure with confidence
η0 that at least one outlier-free set of m points is sampled in
RANSAC, we must draw at least k samples, where

k ≥ log(1− η0)

log(1− εm)
, (3)

where ε is the fraction of inlying data points in the data set,
and η0 is typically set to 0.95 or 0.99. In practice, since ε is
often unknown, it is possible to use a worst-case estimate of
ε to precompute the number of RANSAC trials. However, it
is more efficient to use an adaptive stopping criterion where
ε is initialized with a worst-case assumption, and is updated
based on the size of the maximum consensus set found [19].

An additional useful way of thinking about the number
of trials in RANSAC is the following: each sample drawn
is either uncontaminated (a “success”) or contaminated (a
“failure”). The number of uncontaminated samples drawn thus
follows a binomial distribution with probability of success
p = 1/εm. For sufficiently small values of p, this can be
approximated by a Poisson distribution. Thus, the probability
of exactly n successes in k trials can be expressed as

p(n, λ) =
λne−λ

n!
, (4)

where λ is the expected number of successes in k trials. In
RANSAC, we want to ensure with some confidence that the
probability of having no successes falls below some threshold.
Thus, we have p(0, λ) = e−λ < 1−η0. For η0 = 0.95, λ ≈ 3,
implying that on average, approximately 3 good samples are
drawn before the 95% confidence in the solution is reached.

2.2.4 Threshold selection
An important input parameter required by RANSAC is the
threshold t, which determines whether a data point supports a
particular model or not. While it is often possible to make a
reasonable empirical choice, the process for threshold selection
can be formalized. For instance, assume that the data points
are perturbed by Gaussian noise with zero mean and standard
deviation σ. In this context, the point-model error d2 can be
expressed as a sum of n squared Gaussian variables, where n is
the codimension of the model. The residuals thus follow a chi-
square distribution with n degrees of freedom, and the inverse
chi-square distribution can be used to determine a threshold t
that captures a fraction α of the true inliers [20]:

t2 = χ−1
n (α)σ2 (5)

where χ is the cumulative chi-square distribution,, and α is
the fraction of inliers, typically set to 0.95. Thus, when using
the threshold computed with α = 0.95, a true inlier will be
incorrectly rejected only 5% of the time.
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Algorithm 1 Standard RANSAC algorithm
Input: U , η0, kmax, t
Output: θ∗, I∗
k = 0, Imax = 0
while k < kmax do

1. Hypothesis generation
Randomly sample minimal subset of m points
Estimate model parameters θk
2. Verification
Calculate the support set Ik
if |Ik| > Imax then
θ∗ = θk, I∗ = Ik
Recompute kmax from eqn. (3) using ε = |I∗|/N

end if
k = k + 1

end while

2.3 Other robust estimators

While the focus of this paper is directed primarily towards
RANSAC and its variants, it is worth noting that a rich
variety of robust estimation algorithms have been proposed
over the years. Though it is beyond the scope of this paper
to exhaustively list all these techniques, we briefly discuss
a selection of relevant techniques that have been applied to
computer vision problems.

Since scoring models based on the support requires a thresh-
old, one possible approach is to optimize a different cost func-
tion. One historically significant technique, contemporaneous
with RANSAC, is Least Median of Squares (LMedS) [4].
LMedS scores models based on their median error residual,
returning the model with lowest score. However, this breaks
down when the data consists of more than 50% outliers,
since the median residual is no longer informative. Minimum
Probability of Randomness (MINPRAN) [21] searches for a
combination of model parameters and inliers that are least
likely to have occured by chance. While this approach does
not require knowledge of the noise scale, it assumes that
the dynamic range of the outlier data is known. Minimum
Unbiased Scale Estimate (MUSE) [22] and Adaptive Least
K th order Squares (ALKS) [23] are related techniques that
minimize the order statistics of the squared residuals. It has
been noted [24] that their ability to handle large outlier
ratios is limited. Projection Based M-Estimator (pbM) [25]
reformulates the M-estimator optimization criterion in terms
of a projection pursuit optimization problem, automatically
deriving a suitable threshold from univariate kernel density
estimates. However, this can be computationally expensive,
particularly as the model complexity increases [26]. More
generally, one practical limitation of all the above techniques
is that while they do not require the noise scale to be specified,
they do require the number of model hypotheses to be supplied
by the user, which either requires knowledge of the inlier ratio,
or a worst-case assumption – i.e., drawing enough samples to
guarantee success for the worst inlier ratio that could occur in
the data. In other words, these techniques still rely on a user
supplied parameter that can be difficult to estimate.

The StaRSaC algorithm [27] modifies RANSAC to relax
the requirement of a fixed threshold, by executing RANSAC
multiple times with various thresholds, choosing the one that
shows minimum “variance of parameters”. This procedure can
be slow, based on the number of thresholds tested and the num-
ber of RANSAC repetitions per threshold. The Residual Con-
sensus (RECON) algorithm [28] adopts a different paradigm,
testing pairs of models for consistency, using the intuition
that the residual errors for “good” models are in some way
“consistent” with each other. While this technique does not
require the number of hypotheses to be determined a priori,
it is still more computationally expensive than RANSAC due
to the fact that it must test pairs of model hypotheses.

All the techniques discussed thus far broadly follow the
same basic idea: randomly generate model hypotheses, and
select the model that optimizes some function of the data point
residuals. In recent years, there have been some approaches
that try to invert this relationship – i.e., to look at the residuals
for each data point, in order to classify or cluster the points into
inliers and outliers. Some prominent approaches that leverage
this idea are the Ensemble Method [26], J-Linkage [29] and
Kernel Fitting [30], [31]. These aproaches use the observation
that for a given point, the distribution of residuals with respect
to a large set of randomly generated models can be used to
reveal whether the point is an outlier or an inlier. While this
proves to be effective, there is still the limitation that these
methods must somehow generate a “sufficient” number of
model hypotheses. It is worth noting, also, that some of the
approaches outlined above are more general than RANSAC,
in that they are designed for the case of multi-model robust
estimation, which is not a focus of the present work.

Thus far, we have focused on algorithms that explore the
parameter space in a randomized way. There exist determin-
istic alternatives; for instance, Joint Compatibility Branch and
Bounch [32], Active Matching [33] and the Consensus Set
Maximization algorithm of [34]. The former two approaches
have been applied to the problem of verifying feature matches
between images, by leveraging priors on the locations of
image features. In applications where strong priors on the
feature locations are available (such as in high frame-rate
video tracking), this can provide good results, though effi-
ciency concerns still remain. The Consensus Set Maximization
[34] approach reformulates RANSAC as a mixed integer
programming problem, and solves it using a modified branch
and bound algorithm. This provides an optimal solution to
the robust estimation problem, unlike the randomized results
provided by RANSAC; however, this comes at a significantly
higher computational cost.

In summary, it is evident from the discussion in this section
that the field of robust estimation is a very active one, with
a variety of challenges and open problems. In subsequent
sections of this paper, we consider a category of popular
algorithms – RANSAC-based robust estimators – and provide
a unified framework for the analysis of these algorithms.

3 A UNIVERSAL RANSAC FRAMEWORK
In Algorithm 1, we summarized the operation of RANSAC in
the form in which it is often applied. However, note that there
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are some important limitations of the technique when used in
this form. Most significantly:

1) Efficiency: From Section 2.2, note that the time complex-
ity in RANSAC depends on the subset size m, the inlier ratio
ε, and the number of data points N . Thus, there are scenarios
where the runtime of RANSAC can be prohibitively high. In
addition, note that there is an implicit assumption in equation
(3), that a model generated from an all-inlier sample will be
“perfect”, resulting in all inliers being found. In practice, this is
seldom the case, since the use of minimal samples implies that
the model hypotheses themselves are “noisy”. Consequently,
the number of iterations required by RANSAC is typically
more than that predicted by equation (3) [35].

2) Accuracy: As noted in Section 2.2.2, the reliance of
RANSAC on minimal samples is due to efficiency consid-
erations. However, model parameters that are computed from
minimal subsets may be significantly far from their true values.
It is thus worth stressing that the model parameters returned
by standard RANSAC can often be sub-optimal and must be
refined prior to being used for additional tasks.

3) Degeneracy. The objective function in RANSAC relies
on the assumption that a model generated from a contaminated
minimal sample will have low support, thus making it possible
to distinguish between correct and incorrect models. This
assumption may be violated when degenerate configurations
are encountered. For instance, in the case of epipolar geometry
estimation with the 7-point algorithm [20], when the minimal
sample comprises of five coplanar points and two arbitrary
points, the resulting model is consistent with all points on the
plane, though the resulting epipolar geometry is incorrect.

A number of techniques have been proposed in recent years
to deal with these, as well as other, limitations of RANSAC.
To put these disparate techniques into context, we extend
the simple hypothesize-and-verify structure of RANSAC and
propose a Universal RANSAC framework, illustrated in Figure
1. This framework generalizes RANSAC by incorporating a
number of important practical and computational considera-
tions. In the remainder of this section, we describe the various
components in Figure 1, and discuss the many variations
and extensions proposed in the literature within this unified
context. In particular, note that all the techniques discussed
below can be viewed as special cases of the USAC framework.

3.1 Prefiltering (Stage 0)
The input to RANSAC is a set U , consisting of N data points.
As seen in Section 2.2.3, the number of iterations required is
a function of the contamination in this set. Given that the
runtime of RANSAC is closely tied to the inlier ratio, a few
efforts have been targeted towards improving the quality of
the data points that form the input to the algorithm. Strictly
speaking, this step is not a part of the core random sample
consensus framework itself, since it involves “cleaning up”
the input data before the algorithm commences. It is worth
noting, however, that performing this step when applicable
can significantly benefit RANSAC.

Considering the specific problem of estimating multi-view
geometric relations, the input to RANSAC is typically a set of

1a. Sampling

0. Prefiltering

1b. Sample check

Sample minimal 

subset

2a. Model generation

2b. Model check

Generate minimal-

sample model(s)

3a. Verification

3b. Degeneracy

Is the model 

interesting?

Generate non-minimal 

sample model
4. Model refinement

Terminate?
NoConfidence in solution 

achieved?

Yes

Model parameters, inliers

Fig. 1: The Universal RANSAC framework. The figure represents a
generalized RANSAC framework that takes into account a number
of important practical and computational considerations. USAC is a
synthesis of various RANSAC techniques, and provides a unified
view of recent advances in this area. In addition to providing a
common context for the different RANSAC variants, the combination
of these techniques into a single robust estimation framework allows
them to interact with, and benefit from, each other. Thus, an imple-
mentation of the USAC framework as sketched above, with state of
the art algorithms for each individual module, allows us to address
the various limitations of RANSAC in a unified manner.

feature matches. Considerable effort has been directed towards
imposing constraints on the output of a feature detector
in order to provide a more reliable set of feature matches
[36], [37], [38], [39]. In the RANSAC literature, one recent
effort that investigates the computational benefit of a spatial
consistency filter applied to an initial set of feature matches is
SCRAMSAC [40]. This consistency filter results in a reduced
set of matches that are more likely to be correct, in turn
speeding up RANSAC by up to an order of magnitude.

3.2 Sample minimal subset (Stage 1)
Stage 1a: Sampling
In standard RANSAC, minimal subsets are generated by
sampling uniformly at random from the set of data points.
In the most general setting, this implies that no assumptions
are being made about the data. In many practical situations,
however, it may be possible to incorporate prior information
and bias the sampling with a view towards preferentially
generating models that are more likely to be correct. This
can have a dramatic effect on the efficiency of RANSAC,
particularly for low inlier ratios. This simple observation has
been explored in a number of ways in the RANSAC literature.
A review of some prominent work in this area follows.



5

3.2.1 NAPSAC

The N-Adjacent Points Sample Consensus (NAPSAC) al-
gorithm [41] uses the observation that often, inliers in the
data tend to be “closer” to one another than to outliers.
Considering an n-dimensional space, assume that outliers are
distributed uniformly within a bounded region, and that inliers
are distributed on a d-dimensional manifold within the same
region. Consider a hyper-sphere of radius r, centered at a
point on the manifold. The number of inliers within the
hypersphere is proportional to rd, whereas the number of
outliers is proportional to rn. Since n > d, this implies that
as the radius decreases, the probability of finding an outlier
decreases faster than the probability of finding an inlier. In
NAPSAC, an initial data point x0 is selected at random. Next,
the algorithm finds a set of points Sx0 such that all points in the
set lie within a hyper-sphere of radius r, centered around x0. If
the number of points in Sx0 is less than the size of the minimal
sample, then this set is discarded, and the sampling process
repeats afresh. Otherwise, points are selected uniformly from
Sx0 until a minimal sample of size m has been selected.

One of the notable advantages of NAPSAC arises in the case
of high dimensional models, where the probability of drawing
an an uncontaminated sample becomes very low even for
relatively uncontaminated datasets. On the other hand, one of
the disadvantages of a NAPSAC style strategy is that enforcing
the spatial proximity requirement can make the algorithm
prone to degeneracies. In fact, specific techniques have been
proposed to enforce exactly the opposite requirement – that
samples are prevented from incorporating data points that are
too close to each other [42], [43].

3.2.2 PROSAC

The Progressive Sample Consensus (PROSAC) algorithm [44]
uses a measure of the quality of the data points in order
to preferentially generate hypotheses that are more likely to
be valid. In many computer vision problems, this measure
of quality is readily available. For instance, when finding
feature matches between a pair of images, a similarity function
is typically evaluated over a number of tentative matches,
and subsequently thresholded to obtain a set of putative
correspondences. In this scenario, similarity scores can be used
as a weak measure of correctness of the correspondences.

PROSAC can be viewed as a process that starts by deter-
ministically testing the most promising hypotheses (generated
from the most promising data points), gradually shifting to
the sampling strategy of RANSAC as the confidence in the a
priori sorting based on quality scores decreases. PROSAC is
designed to draw the same samples as RANSAC, but in a more
meaningful order. Consider a sequence of TN samples of size
m drawn by RANSAC from the set of all N correspondences.
This sequence is denoted by {Mi}TN

i=1. Let {M(i)}TN
i=1 denote

a sequence of the same samples, but now sorted in descending
order of sample quality. If we follow this ordering, then
samples that are more likely to be good are drawn earlier.
As the algorithm progresses, points with lower quality scores
are gradually incorporated, and after TN samples, all original
RANSAC samples {Mi}TN

i=1 are drawn.

In practice, the PROSAC approach has been shown to
achieve significant computational savings, since good hypothe-
ses are generated early on in the sampling process. However,
while the ordering based on quality scores is less “local” than
the NAPSAC strategy, it has been observed that invariably,
PROSAC too needs safeguards against degeneracies [18]. In
addition, when the quality scores are less helpful, for instance
in the case of scenes with significant repetitive structure, the
gains obtained with PROSAC are less significant [18], [45].

3.2.3 GroupSAC
While the NAPSAC strategy aimed to exploit the observation
that inliers tend to be “closer” to each other than outliers, the
recent GroupSAC algorithm [45] uses a more general version
of this observation – that inliers are often more “similar” to
each other. Assuming that we can separate data points into a
number of groups that are similar according to some criterion,
GroupSAC is a sampling strategy that aims to exploit this
grouping.

In GroupSAC, the data points are partitioned into a set
of groups {Gi}, i = 1...K, with the intuition that these
groups tend to have either a high or a low fraction of inliers.
Considering the feature matching problem for an image pair,
groups may be obtained by optical flow based clustering. The
assumption here is that the largest, more consistent clusters
tend to have a higher fraction of inliers. As in PROSAC,
sampling scheme is devised that starts by testing a small subset
of the most promising groups, and gradually expands this to
include all points.

While GroupSAC was shown to improve sampling effi-
ciency, its applicability hinges on finding a grouping that
makes sense in the context of the problem being considered.
Furthermore, since the grouping stage is a part of the robust
estimation module, the particular grouping strategy used (e.g.,
optical flow, image segmentation, etc.) should itself be very
efficient, so as to not appreciably increase the overall runtime.

Stage 1b: Sample check
Once a minimal sample has been generated, the next step in
standard RANSAC is to compute model parameters from this
minimal sample. In some cases, however, it may be possible
to insert a simple test to first check whether the sample is
suitable for computing model parameters. For example, when
computing a homography from a sample of four point corre-
spondences, it is possible to incorporate chirality constraints to
immediately rule out incompatible arrangements of the points
in each image. More specifically, if the sign of the product of
oriented area is not the same for the four points in each image,
then the sample can be discarded. Note that this simple test
requires very little overhead, particularly when compared to
the expensive model generation and verfication stages.

3.3 Generate minimal sample model(s) (Stage 2)
Stage 2a: Model generation
In this step, model parameters are computed from the minimal
subset. Note that in the minimal case, a single sample could
result in the generation of multiple solutions, each of which
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needs to be evaluated by the algorithm. It is also worth
noting that since the model parameters are generated from
minimal samples, the influence of noise is the largest possible.
Consequently, it is advisable that these minimal sample models
should be used only after some form of refinement, either
within the algorithm, or through a post hoc procedure.

Stage 2b: Model check
In standard RANSAC, once a model has been generated,
its support is determined by verifying the model against all
data points. It may be possible, however, to first introduce a
preliminary test that checks the model based on application-
specific constraints, and then performs the verification only
if required. As a simple example, consider the case of fitting
a circle to a set of points, where only circles with a certain
range of radii are desired. By first testing the validity of the
model parameters, it may be possible to completely skip the
more expensive verification stage.

In [46], the computational benefit of a model check stage
is demonstrated for the case of epipolar geometry estimation.
By noting that for real cameras, only points in front of the
camera are visible, it is possible to enforce oriented epipolar
constraints via the model check stage. Each of the fundamental
matrices is first tested to see whether it satisfies the oriented
constraint. If this test is passed, the support of the fundamental
matrix is computed as usual. If not, then the model may be
discarded without further inspection. In [46], it was shown
that, depending on the scene, anywhere between 10%-92% of
the models could be rejected just based on this simple oriented
constraint test.

3.4 Is the model interesting? (Stage 3)
In standard RANSAC, the goal of the model verification stage
is to compute the support of the model by evaluating all
data points, and to return the model that gathers the largest
consensus set. We take a more general view, where the goal of
this stage can be posed as providing an answer to the question:
is the model interesting? Models generated from contaminated
samples have arbitrary model parameters, and thus reveal no
useful information about any data points that are not contained
in the minimal sample itself. These models can be viewed as
“non-interesting”, and the goal of the verification process is
to filter out these models. On the other hand, “interesting”
models, or those that are likely to lead to the largest consensus
set, are worth investigating further. In the Universal RANSAC
formulation, the notion of a model being “interesting” has two
components: (1) the model is likely to gather large support
(2) the model is non-degenerate. While RANSAC seeks the
answer to this question, the standard formulation is limited by
the assumptions made (refer to the beginning of Section 3)
as well as efficiency concerns. In the USAC framework, the
objective is to answer this question while improving upon both
the efficiency and the robustness of the standard algorithm.

Stage 3a: Model verification
The runtime of RANSAC can expressed as

t = k(tM + m̄StV ) (6)

where k is the number of samples, mS is the number of
models per minimal sample, and tM and tV denote the time
required to compute model parameters, and to verify the
model, respectively. If for convenience, the time taken to
verify a single point is chosen as the unit of time, then for
RANSAC, tV = N , where N is the number of data points.
When N is large, the verification stage can thus consume a
large fraction of the total runtime. Note, however, that the
number of uncontaminated samples generated in RANSAC is
typically small. In turn, this implies that almost almost all
the hypothesized models are likely to be contaminated. If we
assume that these contaminated models will be consistent with
only a few data points, then it may be possible to discard “bad”
models early on in the verification stage.

The techniques we discuss in this section propose variations
of the same basic idea: conduct a statistical test on a small
number of data points, and discard or accept the model based
on the results of the test. The basic statistical test can be
generalized as follows: given a model from the hypothesis
generation stage, determine whether the model is “good” –
i.e., it leads to the solution with maximal support, or it is
“bad” – i.e., one of the data points in the sample is an outlier.
The property “good” is a hidden state that is not directly
observable, but is statistically linked to observable events. In
the case of RANSAC, the observable events are the results of
the individual point evaluations.

3.4.1 The Td,d Test
In [47], model verification is first performed using a subset of
d randomly selected points (where d � N ). The remaining
N − d points are evaluated only if the first d points are all
inliers to the model. An expression for the number of verified
correspondences per test, tV , can be derived as a function of
d, by considering two cases: the result of the test on a good
vs. bad samples:

tV (d) = Pg((1− α)N + αt̄α)

+(1− Pg)(βN + (1− β)t̄β) (7)

where Pg is the probability of drawing a good sample, α is
the probability that a good sample does not pass the pre-
verification test, and β is the probability that a bad sample
passes the test. t̄α and t̄β represent the average number of
points tested in the two cases. Note that the efficiency of
the test hinges on the relation β � (1 − α), i.e., that a bad
sample should ideally be consistent with far fewer points than
a good sample. The value α may be approximated as 1 − εd
and β as δd, where δ is the probability that a data point is
consistent with an incorrect model. In [47], an optimal setting
of d = 1 was derived by minimizing the average time spent in
the pre-verification step. In other words, the T1,1 test checks
a model against a randomly drawn data point. If the model
is consistent with the point, verification continues. If not, the
model is discarded and a new sample is generated. Note that
a valid hypothesis may be mistakenly rejected by the Td,d
test. Thus, one of the consequences of this approach is that it
requires many more hypotheses than the original RANSAC.
However, providing the hypothesis generation step is not too
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expensive, the overall runtime is typically reduced due to the
preverification procedure [17], [18], [48].

3.4.2 Bail-Out Test

The idea of early termination of bad hypotheses was further
extended in [49]. Given a model to be scored, a randomly
selected subset of n points is evaluated against the model. If
the observed inlier ratio within this subset, εn, is significantly
less than the best inlier ratio observed so far, ε∗, then it is
unlikely that the current model will yield a larger consensus
set than the current maximum and can be discarded. More
formally, given that In inliers have been seen within a subset
of size n, the probability that the total number of inliers Ī
for the current hypothesis will be greater than the current best
inlier count, I∗ is given by

pconf = p(Ī > I∗) =

N∑
Ī=I∗

p(Ī|In, n,N) (8)

When this probability drops below a certain threshold (e.g.,
1%), the model can be discarded. Since equation (8) is
difficult to directly compute, an alternative is presented. The
distribution of the number of inliers In in a subset of n points
follows a hyper-geometric distribution. The idea behind the
bail-out test is to compare the number of inliers seen within a
subset of n points against a lower bound Iminn . If In < Iminn ,
then bail-out occurs. In order to compute Iminn , note that
the hypergeometric lower bounds may be approximated either
using a binomial distribution for small values of n, or as a
normal distribution for large values of n.

It was shown in [17], [18], [49] that the bail-out test
typically results in a factor of 2-7 improvement in performance
compared to standard RANSAC. Note, however, that the
strategy outlined in [49] does not account for the fact that a
good hypothesis might be incorrectly rejected by the bail-out
test. As noted in [17], computing this probability is intractable.
Thus, while the test is effective in practice, it is not, in a
general sense, optimal.

3.4.3 SPRT test

Most recently, an optimal randomized model verification strat-
egy was described in [17], [50]. The test is based on Wald’s
theory of sequential testing [51]. The theory was first applied
for quality control in industrial inspection, with the goal of
deciding whether a batch of products was “good” or “bad”,
while making the smallest number of observations possible.
The verification stage of RANSAC has a similar goal: to
decide whether a model is “good” (Hg) or “bad” (Hb). Wald’s
SPRT test is a solution of a constrained optimization problem,
where the user supplies acceptable probabilities for errors
of the first type (rejecting a good model) and the second
type (accepting a bad model) and the resulting optimal test
is a trade-off between the time to decision, and the errors
committed. The SPRT test is based on the likelihood ratio

λj =

j∏
r=1

p(xr|Hb)

p(xr|Hg)
(9)

where xr is equal to 1 if the r-th data point is consistent with a
given model, and 0 otherwise. p(1|Hg) denotes the probability
that a randomly chosen data point is consistent with a good
model, and this can be approximated by the inlier ratio ε.
Similarly, p(1|Hb) is the probability that a randomly chosen
data point is consistent with a bad model, and this can be
modeled using a Bernoulli distribution with parameter δ. If,
after evaluating j data points, the likelihood ratio (9) becomes
greater than some threshold A, the model is rejected.

The decision threshold A is the main parameter of the SPRT
test and can be set to achieve optimal runtime, assuming that
the two parameters ε and δ are known a priori. In practice,
however, these parameters are typically unknown, and have
to be estimated during the evaluation process, adjusting the
value of the threshold A, based on current estimates. For
the case of multi-view geometry problems, for instance, an
initial estimate of the parameter δ can be obtained through
geometric constraints. An initial value of ε can be estimated
from the maximum number of RANSAC iterations that the
user is willing to perform, and this may be updated by using
the size of the largest support found so far.

In the multi-view geometry estimation experiments in [17],
[18], it was shown that the randomized verification procedure
based on the SPRT test results in a factor 2-9 runtime
improvement over standard RANSAC. While the performance
of the bail-out and SPRT tests are comparable for the case
of higher inlier ratios (where the time to solution is low), the
SPRT test was found to perform approximately 20% faster
than the bail-out test for more challenging problems with lower
inlier ratios.

3.4.4 Preemptive verification
The verification schemes discussed above are all depth-first
in nature, meaning that a particular model is completely
evaluated before moving on to the next model. Note that this
approach is not directly applicable in the case where real-
time performance is desired, since both the number of models,
as well as the number of evaluations per model, may be
arbitrary. In [52], a breadth-first formulation called preemptive
RANSAC was introduced, where a fixed number of model
hypotheses are generated beforehand and scored on a subset of
the data points. Subsequently, the models are reordered based
on these results, and a fraction of the models propagate to the
next round of evaluation. This lends itself naturally to real-
time applications, with a bound on the acceptable runtime.
This approach was further improved upon in [18], where the
Adaptive Real-Time Random Sample Consensus (ARRSAC)
algorithm was introduced. ARRSAC retains the benefits of
both breadth- and depth-first approaches (i.e., bounded run-
time and adaptivity), and enables real-time operation over a
wider range of inlier ratios.

It is important to note that the objectives of standard
RANSAC and real-time RANSAC are significantly different.
The goal in RANSAC is to find, with predefined confidence
η0, the “best” model according to some cost function. The
goal in real-time RANSAC is to find the best model within a
fixed time budget. Thus, there may exist cases where a good
solution is simply out of the reach of these real-time methods.
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Stage 3b: Degeneracy
In general, data is said to be degenerate if it does not provide
sufficient constraints to compute a unique solution. Since
RANSAC, in its standard form, does not have a safeguard
against degeneracy, this can lead to incorrect solutions being
returned by the algorithm.

A recent example that shows the utility of a test for degener-
acy is that of DEGENSAC [53], where a detailed derivation is
given for a nonlinear problem of epipolar geometry estimation.
In this case, a notable example of degeneracy is that of points
lying on a scene plane. In particular, when five of the seven
image correspondences comprising the minimal sample for
fundamental matrix estimation lie on the same plane in 3D,
then the resulting model is consistent with all points that
lie on the same plane. Consequently, in the case of images
containing a dominant scene plane, an incorrect solution is
often returned by the algorithm. To deal with this situation,
a specific test was devised that aimed to identify samples
where five or more correspondences in a minimal sample are
related by a homography. The corresponding models are then
subject to a model completion step, where the goal is to find, if
possible, non-degenerate inliers that could be used to compute
the correct model, given knowledge of the degeneracy.

A more general technique for dealing with degeneracy
was proposed in [54], which describes a framework for
RANSAC with (quasi-) degenerate data (QDEGSAC). The
quasi-degenerate problem occurs when a majority of the data
is degenerate, and thus does not provide enough constraints to
compute the model uniquely, and only a few non-degenerate
data points provide the remaining constraints. However, the
probability of these few points being sampled is considerably
low, and thus RANSAC will most often return the degenerate
solution. QDEGSAC provides a solution to this problem for
the case of estimating linear relations. Given a data matrix
A, whose rows contain the constraints provided by the data
points used to estimate the relation, the QDEGSAC framework
can be viewed as a process that robustly measures the rank
rA of the data matrix, by using a sequence of calls to the
RANSAC algorithm. The first execution estimates the most
general model, which is appropriate for non-degenerate data.
Following this, a series of RANSAC runs are performed
successively on the inliers of the previous run, each run adding
a linear constraint on the data. Finally, the most constraining
model that successfully explains at least 50% of the original
inliers to the first RANSAC is returned as the solution. Note
that QDEGSAC is not a component of RANSAC; rather, it
uses a number of RANSAC runs to effectively perform robust
model selection. In the context of Figure 1, for instance,
QDEGSAC can be thought of as a wrapper around the USAC
framework.

3.5 Model refinement (Stage 4)

In general, data is said to be degenerate if it does not provide
sufficient constraints to compute a unique solution. Since
RANSAC, in its standard form, does not have a safeguard
against degeneracy, this can lead to incorrect solutions being
returned by the algorithm.

A recent example that shows the utility of a test for degener-
acy is that of DEGENSAC [53], where a detailed derivation is
given for a nonlinear problem of epipolar geometry estimation.
In this case, a notable example of degeneracy is that of points
lying on a scene plane. In particular, when five of the seven
image correspondences comprising the minimal sample for
fundamental matrix estimation lie on the same plane in 3D,
then the resulting model is consistent with all points that
lie on the same plane. Consequently, in the case of images
containing a dominant scene plane, an incorrect solution is
often returned by the algorithm. To deal with this situation,
a specific test was devised that aimed to identify samples
where five or more correspondences in a minimal sample are
related by a homography. The corresponding models are then
subject to a model completion step, where the goal is to find, if
possible, non-degenerate inliers that could be used to compute
the correct model, given knowledge of the degeneracy.

A more general technique for dealing with degeneracy
was proposed in [54], which describes a framework for
RANSAC with (quasi-) degenerate data (QDEGSAC). The
quasi-degenerate problem occurs when a majority of the data
is degenerate, and thus does not provide enough constraints to
compute the model uniquely, and only a few non-degenerate
data points provide the remaining constraints. However, the
probability of these few points being sampled is considerably
low, and thus RANSAC will most often return the degenerate
solution. QDEGSAC provides a solution to this problem for
the case of estimating linear relations. Given a data matrix
A, whose rows contain the constraints provided by the data
points used to estimate the relation, the QDEGSAC framework
can be viewed as a process that robustly measures the rank
rA of the data matrix, by using a sequence of calls to the
RANSAC algorithm. The first execution estimates the most
general model, which is appropriate for non-degenerate data.
Following this, a series of RANSAC runs are performed
successively on the inliers of the previous run, each run adding
a linear constraint on the data. Finally, the most constraining
model that successfully explains at least 50% of the original
inliers to the first RANSAC is returned as the solution. Note
that QDEGSAC is not a component of RANSAC; rather, it
uses a number of RANSAC runs to effectively perform robust
model selection. In the context of Figure 1, for instance,
QDEGSAC can be thought of as a wrapper around the USAC
framework.

4 IMPLEMENTATION

In Section 3, we introduced a Universal RANSAC framework
to provide a common context within which to analyse various
variants of RANSAC. However, it becomes immediately clear
that this framework can also provide the basis for a high
performance robust estimator that addresses many of the limi-
tations of RANSAC within a single unified system. Thus, one
of the goals of our work is to provide a stand-alone C++ imple-
mentation that implements the Universal RANSAC framework
presented in the previous section. More specifically, while
Section 3 discussed a number of alternatives for each stage
of the framework, we now describe a specific implementation
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1a. PROSAC sampling

1b. Sample check

Sample minimal subset

2a. Model generation

2b. Model check

Generate minimal-sample model(s)

3a. Verification with SPRT

3b. DEGENSAC

Is the model interesting?

Generate non-minimal sample model

4. Local optimization (LO)

Terminate?

NoConfidence in solution 

achieved?

Yes

Model parameters, inliers

Input data points

Ordering based on 

quality scores

Fig. 2: USAC-1.0 implementation. We present a high-performance
implementation of the general framework of Figure 1, by use of state
of the art algorithms for the individual modules. The combination of
these techniques results in a robust estimator that address many of the
limitations of standard RANSAC within a unified software package.
In addition, by optionally invoking the individual modules in isolation
(e.g., just PROSAC sampling), the implementation can be modified
to behave like the corresponding variant of RANSAC.

that uses an appropriate choice of algorithm for each module,
keeping in mind concerns about robustness, performance and
generality. These algorithmic choices are also illustrated in
Figure 2. We call this implementation USAC-1.0 to emphasize
that it is based on current state of the art techniques, and can
be extended as new advances emerge. The implementation can
be accessed at: http://cs.unc.edu/∼rraguram/usac.

By making the implementation freely available, it is our
hope that the system will be extended adding implementations
of existing alternatives to the techniques implemented, or by
developing new variants. In addition, once a new algorithm
has been incorporated, its performance can easily be compared
to other techniques using the presented framework and bench-
marks. In summary, this implementation will be of use to other
researchers as a standalone, high-performance tool for robust
estimation; as a starting point for new RANSAC variants; or
as a benchmark for the evaluation of new techniques.

4.1 Sample minimal subset

Given a (possibly prefiltered) set of data points, the goal of this
step is to generate a sequence of minimal samples. From the
discussion in Section 3.2, it is clear that the various sampling
strategies proposed in the literature all come with trade-offs. In
particular, all these sampling strategies invariably involve the
preferential selection of samples that are in sensitive spatial
configurations. Consequently, it is advisable to couple this
the non-uniform sampling stage with modules that handle
degeneracy detection and model refinement.

In our implementation, we choose the PROSAC (Section
3.2.2) sampling strategy for the sample generation stage. This
choice was made to reach a compromise between performance,
generality and susceptibility to degenerate configurations.
PROSAC is more easily applicable in the general case than
GroupSAC, and less susceptible to degenerate configurations
than NAPSAC. PROSAC requires an additional input in the
form of ordering information for the data points in terms of
their quality scores, which is often available. In addition, while
our implementation does not rely on it, once a minimal sample
has been selected, problem-specific checks can be enforced to
eliminate undesirable minimal samples, as outlined in Section
3.2 (Stage 1b).

4.2 Generate minimal sample model(s)
The process of model generation and checking are both depen-
dent on the problem under consideration. While the complexity
of model generation lies outside the scope of USAC, it should
be noted that incorporating the model checking stage can
significantly reduce the number of models that propagate to
subsequent stages of the algorithm.

4.3 Is the model interesting?
The goal of this step is to efficiently verify the model, and
also to check for degeneracy. We perform this step using
the SPRT test outlined in Section 3.4.3, which represents the
optimal strategy for randomized model verification. This test
requires two additional input parameters, namely ε and δ. As
noted in Section 3.4.3, these parameters can be initialized
conservatively, and are automatically updated as the algorithm
progresses.

We choose to employ a specific degeneracy detection mod-
ule that calls a user provided function to check for model
degeneracy once it has been verified to be the current best
model. As seen in the case of DEGENSAC (Section 3.4.4), this
is with a view towards increasing robustness while maintaining
computational efficiency. Note, however, that integrating the
USAC algorithm with QDEGSAC is simple: the sequence of
calls to RANSAC that occur within QDEGSAC need to be
simply replaced by calls to USAC.

4.4 Generate non-minimal sample model
For refining the current best model, we use the Lo-RANSAC
approach (Section ??), due to its generality. We have found
that the inner-RANSAC approach, coupled with an iterative
reweighted least squares procedure gives good results in prac-
tice, while not adding appreciably to the computational cost.
In our implementation, we make an additional optimization
in the interests of efficiency: before performing the local
optimization step, a check is performed to determine the extent
to which the current inlier set overlaps with the best inlier
set found so far. If this overlap is substantial (e.g., ≥ 95%),
then it is unlikely that the local optimization will significantly
improve upon the best result, and this step can be skipped.
The effect of this enhancement is to prevent excess time from
being spent in the computation of a locally refined solution.
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4.5 Confidence in solution achieved?

As discussed in Sec. 2.2.3, the standard RANSAC algorithm
terminates when the probability of finding a set of inliers
that is larger than the best support found so far falls under
a predefined threshold η0. For RANSAC, this probability can
be computed as

ηR = (1− 1/εm)k, (10)

where k is the number of samples drawn so far. This
gives rise to the standard stopping criterion in equation (3).
Two important modifications to this stopping criterion are
discussed below.

Non-uniform sampling:
The use of non-uniform sampling results in good samples
being drawn earlier on in the process. However, if the standard
stopping criterion from equation (10) is used with ε being
computed over the whole dataset, then the total number of
samples drawn will be the same as in RANSAC. We thus
consider two factors to determine when the algorithm should
stop: non-randomness and maximality. The idea is to look for
a stopping length n∗ that satisfies both constraints.

The probability of having i random inliers by chance within
the subset Un is given by a binomial distribution

pn(i) = δi−m(1− δ)n−i
(
n−m
i−m

)
, (11)

where δ is the probability of a random point being consistent
with a contaminated model. For each n, the minimum size of
“non-random” support is calculated as

Iminn = min{j :

n∑
i=j

pn(i) < ψ}, (12)

where the inequality represents a simple p-value test to deter-
mine, for each n, the smallest support such that the probability
of randomness falls below ψ (set to 0.05 for a 5% significance
test). The stopping length n∗ must have In∗ ≥ Iminn

The maximality constraint is again given by equation (10),
and is used to ensure, with some confidence, that no better
solution exists within the set Un. Thus η = (1 − 1/εmn )kn ,
where εn is given by In/n. The stopping length n∗ is chosen
to minimize the number of samples kn∗ , subject to the
non-randomness constraint.

Randomized verification:
When a randomized verification strategy is adopted, there is
a chance that good models may be erroneously rejected by
the verification step. Thus, the stopping criterion must now
account for this by drawing additional samples to achieve the
same confidence. Since we use the SPRT test, the probability
of finding a better model than the current best one is given by

η = (1− (1− α)/εm)k, (13)

where α is the probability that a “good” model is rejected
by the SPRT. In practice, α is not constant, being reestimated
based on current estimates of the test parameters, ε and δ.
Given an SPRT threshold Ai computed using the current

estimates of εi and δi, the probability of rejecting a good
model, with inlier fraction ε, is αi = A−hi

i , where hi is
computed from the relation

ε

(
δi
εi

)hi

+ (1− ε)
(

1− δi
1− εi

)hi

= 1. (14)

This implies that whenever the value of the SPRT threshold
Ai is updated, this results in a new αi. Given the lth SPRT
test, the probability η from equation (13) is now given by the
product over all individual tests, as

η =

l∏
i=0

(1− (1−A−hi
i )/εm)ki . (15)

5 EVALUATION

In this section, we evaluate the performance of the USAC-
1.0 implementation against current state of the art techniques,
on a variety of estimation problems. Note that while robust
estimators are perhaps most frequently applied in geometric
vision problems, USAC is a general robust estimator, meaning
that it can be used in virtually any scenario where models are
being estimated from contaminated data measurements.

One interesting feature of the software library we provide
is that it has a modular structure, and can be easily configured
to behave in a number of different ways. In particular, as
noted in Section 3, many of the important RANSAC variants
can be interpreted as special cases of this implementation. In
its most reduced form, the implementation behaves exactly
like the standard RANSAC algorithm outlined in Algorithm
1. By “switching on” the individual modules of Figure 2, it
becomes possible to independently evaluate the effect that an
specific module (e.g., PROSAC based non-uniform sampling)
has on the estimation results. The choice of modules and
parameters can be easily specified using a common config-
uration file. In other words, the implementation in Figure 2
not only represents USAC-1.0, but, it also in effect provides
an implementation of a number of RANSAC variants, all
within a single, easily configurable software package. For the
experimental comparisons in this Section, we thus configured
our implementation to represent state of the art robust estima-
tors. In particular, we compare the performance of USAC-1.0
against the following:

1) RANSAC: the standard RANSAC algorithm, as laid out
in Alg. 1. This denotes the baseline for comparison.

2) SPRT: RANSAC with optimal randomized verification,
which represents the state of the art for efficient model
verification.

3) PROSAC: RANSAC with non-uniform sampling based
on ordering data points by quality scores, leading to
efficient hypothesis generation.

4) LO: RANSAC with local optimization, resulting in more
accurate solutions.

In all experiments, since the ground truth is unknown, the
true inlier ratios (along with the ground truth inliers) were
estimated by performing 107 evaluations of random models,
followed by a refinement step. Following this, the inliers were
manually inspected to ensure validity of the data points and
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Fig. 3: Fraction of true inliers returned by each algorithm for three estimation problems. The labels on the X-axis correspond to the datasets
in Tables 1, 2, and 3. The plots represent average values over 500 runs, for each algorithm and dataset. Note that for all estimation problems,
USAC-1.0 consistently returns close to 100% of the true inliers. The USAC-1.0 and LO curves are virtually identical, as are the RANSAC
and SPRT curves. PROSAC, while fast, often returns solutions that have fewer inliers.

RANSAC SPRT PROSAC Local-opt USAC 

(a) Homography: A 

(b) Fundamental matrix: A 

(c) Essential matrix: A 

Fig. 4: Visualization of the stability of the estimation results for each of the five algorithms evaluated. The results are shown for (a)
homography estimation (dataset A from Table 1) (b) fundamental matrix estimation (dataset A from Table 2) (c) essential matrix estimation
(dataset A from Table 3). In each graph, for every feature correspondence in the dataset (x-axis), we determine the fraction of runs, out of
500, where that correspondence is classified as an inlier (y-axis). The points on the x-axis are sorted in decreasing order of these probabilities.
In the ideal case, each true inlier would have a score of 100%, and each true outlier would have a score of 0%. It can be seen that RANSAC
and SPRT show comparable trends, while PROSAC is often significantly worse, missing true inliers on many of the runs. The results for
LO and USAC-1.0 are very stable, and correspond closely to the ideal situation.

to verify that no outliers were erroneously included. In all
experiments, the results we report are average values obtained
over 500 executions of each algorithm.

5.1 Homography

We evaluate the performance of USAC-1.0 for the problem of
2D homography estimation. The results are tabulated in Table
1. The inlier ratios in the data range from 10%-46%, making
this a challenging dataset for robust estimation algorithms. The
table lists, for each algorithm, the number of inliers found, the
number of hypotheses and models, the number of verifications

per model, and the total runtime (in milliseconds). For USAC-
1.0, the table also lists the number of hypotheses/models that
are rejected by the sample/model check steps from Figure 2
(steps 1b and 2b). To determine the accuracy of the solution,
we compute the Sampson error [20] and report the root mean
square (RMS) value over 500 executions of each algorithm.

It can be seen from the results that USAC-1.0 consis-
tently delivers solutions that capture the most inliers, and
which are the most accurate in terms of mean error. This
is due to the local optimization step incorporated in the
algorithm. In addition, the non-uniform sampling, optimized
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model verification and sample/model check modules all result
in significant computational savings. In particular, USAC-1.0
generates orders of magnitude fewer samples than standard
techniques, and evaluates fewer points per model. The overall
runtime is thus on the order of a few milliseconds, even for
very low inlier ratios, representing effective speedups ranging
between 5x-520x compared to RANSAC. It is worth noting
that the combination of techniques in USAC results in con-
sistently good performance, even when individual techniques
are relatively ineffective – for e.g., in example E in Table
1, where PROSAC-based sampling results in a significant
runtime, while USAC-1.0 remains very efficient due to the
other optimizations present.

USAC-1.0 in general has much lower runtimes compared
to the other techniques tested, save for PROSAC, which can
sometimes be slightly faster than USAC-1.0. However, note
that the solutions delivered by PROSAC can be unstable, due
to the fact that the points selected are often poorly distributed
in the image (e.g., the highest ranking points are typically
spatially very close to each other). In USAC-1.0, this effect
is mitigated by the local optimization step, which incurs a
small additional computational cost but provides much more
accurate and stable results. This effect is illustrated in Figure
3(a), which shows the fraction of true inliers that are returned
by each algorithm. Note from the graphs that USAC-1.0
typically returns a significant fraction of the inliers, while
the corresponding values for PROSAC are often much lower.
This is due to the fact that the local optimization step uses
non-minimal samples to improve the accuracy of the model
parameter estimates, thus resulting in a larger consensus set.
By restimating model parameters using the set of all inliers,
the local optimization is able to “break out” of the spatially
localized fits provided by PROSAC-based sampling.

Another visualization of the stability of the results may be
obtained by running each robust estimator multiple times on
the same dataset, and calculating the fraction of runs in which
a particular correspondence is classified as being an inlier.
For homography estimation, this visualization is presented
in Figure 4(a), for dataset A from Table 1. In each graph,
for each input feature correspondence (x-axis), we plot the
fraction of runs in which that correspondence is classified
as an inlier (y-axis). This provides an empirical estimate of
the probability that a true inlier is correctly classified by
each robust estimation algorithm. The points on the x-axis
are sorted in decreasing order of these probabilities. In the
ideal case, each true inlier would have a score of 100%, and
each true outlier would have a score of 0% . It can be seen
that RANSAC, SPRT and PROSAC show comparable trends;
each of these algorithms misses some inliers on each run, thus
further underscoring the randomized nature of these methods.
On the other hand, the results for LO and USAC-1.0 are very
similar, and correspond closely to the ideal situation. This is an
indication that these methods successfully classify a majority
of the inliers on every run of the algorithm and are thus very
stable.

Finally, note that the standard deviation of the number of
inliers returned by USAC-1.0 is significantly lower than that
of RANSAC. Figures 5(a) and 5(b) compare the histograms of
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(b) Homography A: USAC-1.0
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(c) F-matrix A: RANSAC
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(d) F-matrix A: USAC-1.0

Fig. 5: Histogram of inlier counts for RANSAC vs. USAC-1.0,
computed over 500 trials of each algorithm. Each graph shows the
number of inliers returned on the x-axis and how many times this
number was reached (in 500 runs of the algorithm) on the y-axis.
The graphs show results for homography estimation (a-b) for dataset
A from Table 1 and fundamental matrix estimation (c-d) for dataset
A from Table 2. Note that the histogram of inlier counts is more
spread out for RANSAC, indicating that different inlier maxima are
reached in different runs, owing to the randomized nature of the
algorithm. USAC-1.0, on the other hand, has a much more peaked
distribution, implying that the correct maxima is being reached on
most executions.

retrieved inlier counts over 500 runs of RANSAC and USAC-
1.0, for image pair A from Table 1. It can be seen that the
number of inliers returned by RANSAC can vary quite widely
over different runs, while the histogram for USAC-1.0 is much
more “peaked”, implying that a much more stable solution is
returned in the vicinity of the global maximum. This again, is
due to the application of local optimization, which by using
non-minimal samples to compensate for inlier noise, ensures
that the model parameters are more stable. This also indicates
that while computationally very expensive techniques such as
[34] can be used to maximize the consensus set, USAC-1.0
achieves approximately similar results, at a small fraction of
the computational cost. USAC-1.0 is thus able to deliver more
accurate and stable solutions than current techniques, while
doing so extremely efficiently.

5.2 Fundamental matrix

We evaluate the performance of USAC-1.0 for the problem
of fundamental matrix estimation using the 7-point algorithm.
These results are tabulated in Table 2. The inlier ratios in
the data range from 22%-92%, and examples were chosen
to cover a range of challenging cases, including narrow and
wide baselines, scale change and dominant scene planes (a
degenerate configuration for the fundamental matrix). The
table lists the same statistics as for homography estimation.

As before, it can be seen from the results that USAC-1.0
consistently delivers stable and accurate solutions with low
overall runtimes, with up to 4x-7000x speedups compared
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RANSAC SPRT PROSAC Local-opt USAC-1.0
A : ε = 0.46, N = 2540 I 994±68 991±72 911±160 1137±27 1148±2

error 1.71±0.21 1.62±0.41 2.14±0.93 1.17±0.12 1.04±0.00
k 220 241 11 115 7/0

models 220 241 11 115 7/0
vpm 2540.0 80.3 2540.0 2540.0 426.7
time 40.62 9.16 2.46 34.72 7.71

B : ε = 0.15, N = 514 I 70±4 71±4 56±11 74±0 74±3
error 1.88±0.68 1.87±0.52 4.63±3.44 1.13±0.07 1.19±0.33
k 16766 18800 11 11548 9/1

models 16766 18800 11 11548 8/0
vpm 514.0 25.4 514.0 514.0 110.4
time 940.73 470.07 0.66 652.88 6.21

C : ε = 0.23, N = 1317 I 286±17 287±17 203±30 302±1 302±6
error 1.63±0.44 1.63±0.54 8.49±9.12 0.89±0.06 0.89±0.13
k 2433 2534 4 1717 4/0

models 2433 2534 4 1717 4/0
vpm 1317.0 18.4 1317.0 1317.0 374.1
time 254.62 57.50 0.50 196.90 4.23

D : ε = 0.34, N = 495 I 151±11 152±10 99±24 168±0 168±0
error 2.22±0.45 2.23±0.51 6.81±3.12 1.44±0.00 1.43±0.00
k 663 669 9 354 8/2

models 663 669 9 354 5/0
vpm 495.0 15.1 495.0 495.0 124.0
time 36.00 16.05 0.53 27.71 6.13

E : ε = 0.10, N = 994 I 93±6 93±5 90±7 99±0 99±0
error 3.43±1.42 3.13±1.01 11.43±4.10 2.52±0.36 2.59±0.27
k 75950 84329 12059 49533 7266/6511

models 75950 84329 12059 49533 755/0
vpm 994.0 30.8 994.0 994.0 38.0
time 6532.22 2134.44 1034.98 4266.51 25.74

TABLE 1: Results for homography estimation. The table lists, for each algorithm, the number of inliers found (I), the error of the solution
with respect to the “true” result (error), the number of samples (k) and models (models), the number of verifications per model (vpm), and
the total runtime (time in milliseconds). For USAC-1.0, the table additionally lists, the number of samples and models that are rejected by
the sample/model check tests. The results are averaged over 500 runs of each algorithm.

(a) (b) (c) (d) (e) (f)

Fig. 6: Example degenerate (left) and non-degenerate (right) epipolar geometries for three scenes containing dominant scene planes. Figures
(a), (c) and (e) are results produced by RANSAC, while (b), (d) and (f) are computed with USAC-1.0. The figures show some selected
epipolar lines corresponding to inlier correspondences. Note that for the degenerate cases, the epipolar geometry is consistent with points
on the dominant plane, but not with the (fewer) off-plane inliers.

to RANSAC. The case of fundamental matrix estimation is
particularly challenging since care must be taken to avoid
degenerate solutions. PROSAC, in particular, can be prone to
degeneracies, since even when there is no dominant plane in
the scene, the top ranked points often lie on the same surface.
In urban scenes, this will often lead to a degenerate solution (or
one that is poorly conditioned). Note, for instance, examples
A and B in Table 2, where PROSAC returns solutions very
quickly, but with high errors. The DEGENSAC module in
USAC-1.0 (step 3b in Figure 2) is able to effectively detect and
handle these cases. When the scene contains a dominant plane
(example E), all techniques that do not account for degeneracy
return incorrect solutions. This is further illustrated in Figure 6,
which depicts sample epipolar geometries for degenerate and
non-degenerate solutions provided by RANSAC and USAC-
1.0, respectively. Note that for degenerate solutions, the epipo-

lar lines are consistent with points on the dominant plane,
but not with off-plane inliers. Figure 3(b) shows the fraction
of true inliers that are returned by each algorithm. Note that
USAC-1.0, due to the local optimization, typically returns all
true inliers.

As in the case of homography estimation, Figure 4(b)
provides a visualization of the stability of the results. Note
that while the trends for RANSAC and SPRT are similar,
PROSAC is significantly worse, since it is particularly prone
to degeneracy. Thus, inliers are often misclassified on a sig-
nificant fraction of the runs, as reflected in the corresponding
plot. The results for LO and USAC-1.0 are again comparable,
with USAC-1.0 producing slightly better results. This small
improvement is again explained by the fact that USAC-1.0
is able to detect and recover from degenerate data configu-
rations, whereas LO is sometimes trapped when the minimal
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sample contains points that lie on a scene plane. Finally, the
histograms of inlier counts (Figures 5(c) and 5(d)) indicate
that, as for the homography, USAC-1.0 returns very stable
solutions due to the local optimization.

5.3 Essential matrix
We evaluate the performance of USAC-1.0 for the problem of
essential matrix estimation using the 5-point algorithm [55].
These results are tabulated in Table 3, with inlier ratios in the
data ranging from 26%-65%. We tabulate the same statistics
as for the fundamental matrix, with the error again being given
by the Sampson distance. The dominant plane degeneracy is
not an issue for the 5-point method. However, the time to
compute a minimal solution is more than that for the 7-point.
In this context, note that even for very low inlier ratios (such
as in example F in Table 3), USAC-1.0 is still able to deliver
correct solutions with low runtimes – in fact, well within real-
time, which is useful for real-time 3D reconstruction systems.
Figure 4(c) again shows the relative stability of USAC-1.0, in
regard to the probability of recovering true inliers, as compared
to the baseline methods.

6 CONCLUSION

In this paper, we have presented a comprehensive overview
of the state of the art in RANSAC-based robust estimation.
To provide a unified context for this analysis, we propose
a Universal RANSAC framework, which is a synthesis of
the various optimizations and improvements that have been
proposed to RANSAC over the years. This framework provides
a common context within which to analyse current state of
the art robust estimation algorithms, and to investigate the
interplay between these varied algorithmic components.

As a second contribution of this work, we have developed
a stand-alone C++ library that implements the Universal
RANSAC framework using state of the art algorithms for each
stage (USAC-1.0). The implementation is modular, and the
effect of individual optimizations can be studied in isolation,
as well as in combination with each other. We have evaluated
its effectiveness on a challenging collection of estimation
problems, thereby demonstrating the advantages of unifying
the various RANSAC techniques . This provides state of the art
performance, and can be used as a benchmark against which
to compare newly developed robust estimation algoritms. The
library can be used as a stand-alone tool for use in specific
applications and, furthermore, provides an easily extendible
base for developing new algorithms. By making the datasets
and implementation freely available, it is our hope that this
leads to a standardized evaluation framework for robust esti-
mation algorithms, in addition to providing a framework for
others to use and to build upon.
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