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Abstract This article presents an approach for mod-
eling landmarks based on large-scale, heavily contami-
nated image collections gathered from the Internet. Our
system efficiently combines 2D appearance and 3D geo-
metric constraints to extract scene summaries and con-
struct 3D models. In the first stage of processing, im-
ages are clustered based on low-dimensional global ap-
pearance descriptors, and the clusters are refined using
3D geometric constraints. Each valid cluster is repre-
sented by a single iconic view, and the geometric re-
lationships between iconic views are captured by an
iconic scene graph. Using structure from motion tech-
niques, the system then registers the iconic images to
efficiently produce 3D models of the different aspects of
the landmark. To improve coverage of the scene, these
3D models are subsequently extended using additional,
non-iconic views. We also demonstrate the use of iconic
images for recognition and browsing. Our experimental
results demonstrate the ability to process datasets con-
taining up to 46,000 images in less than 20 hours, using
a single commodity PC equipped with a graphics card.
This is a significant advance towards Internet-scale op-
eration.

1 Introduction

Today, more than ever before, it is evident that “to col-
lect photography is to collect the world” [Sontag, 1977].
More and more of the Earth’s cities and sights are pho-
tographed each day from a variety of digital cameras,
viewing positions and angles, weather and illumination
conditions; more and more of these photos get tagged
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by users and uploaded to photo-sharing websites. For
example, on Flickr.com, locations form the single most
popular category of user-supplied tags [Sigurbjörnsson
and van Zwol, 2008]. With the growth of community-
contributed collections of place-specific imagery, there
comes a growing need for algorithms that can distill
their content into representations suitable for summa-
rization, visualization, and browsing.

In this article, we consider collections of Flickr im-
ages associated with a landmark keyword such as “Statue
of Liberty,” with often noisy annotations and metadata.
Our goal is to efficiently identify all photos that actu-
ally represent the landmark of interest, and to organize
these photos to reveal the spatial and semantic struc-
ture of the landmark. Any system that aims to meet
this goal must address several challenges inherent in
the nature of the data:
– Contamination: When dealing with community-

contributed landmark photo collections, it has been
observed that keywords and tags are accurate only
approximately 50% of the time [Kennedy et al., 2006].
Since we obtain our input using keyword searches,
a large fraction of the input images comprises of
“noise,” or images that are unrelated to the concept
of interest.

– Diversity: The issue of contamination aside, even
“valid” depictions of landmarks have a remarkable
degree of diversity. Landmarks may have multiple
aspects (sometimes geographically dispersed), they
may be photographed at different times of day and
in different weather conditions, to say nothing of
non-photorealistic depictions and cultural references
(Figure 1).

– Scale: The typical collection of photos annotated
with a landmark-specific phrase has tens to hun-
dreds of thousands of images. For example, there
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Fig. 1 The diversity of photographs depicting “Statue of Lib-

erty.” There are copies of the statue in New York, Las Vegas,

Tokyo, and Paris. The appearance of the images can vary signif-
icantly based on time of day and weather conditions. Further

complicating the picture are parodies (e.g., people dressed as

the statue) and non-photorealistic representations. The approach
presented in this article relies on rigid 3D constraints, so it is not

applicable to the latter two types of depictions.

are over 140,000 images on Flickr associated with
the keyword “Statue of Liberty.” If we wanted to
process such collections using a traditional structure
from motion (SfM) pipeline, we would have to take
every pair of images and try to establish a two-view
relation between them. The running time of such an
approach would be at least quadratic in the number
of input images. Clearly, such brute-force matching
is not scalable; we need smarter and more efficient
ways of organizing the images.

Fortunately, landmark photo collections also possess
helpful characteristics that can actually make large-
scale modeling easier. The main such characteristic is
redundancy: people tend to take pictures from certain
viewpoints and to frame their compositions in consis-
tent ways, giving rise to many large groups of very
similar-looking photos. Our system is based on the ob-
servation that such groups can be discovered using 2D
appearance-based constraints that are considerably more
efficient than full-blown SfM constraints, and that the
iconic views representing these groups form a complete
and concise summary of the scene, so that most of the
subsequent computation can be restricted to the iconic
views without much loss of content.

Figure 2 gives an overview of our system and Algo-
rithm 1 shows a more detailed summary of the mod-
eling steps. Our system begins by clustering all input
images based on 2D appearance descriptors, and then it
progressively refines these clusters with geometric con-
straints to select iconic images that represent dominant
aspects of the scene. These images and the pairwise
geometric relationships between them define an iconic

scene graph. In the next step, this graph is used for
efficient reconstruction of a 3D skeleton model, which
is subsequently extended using additional relevant im-
ages. Given a new test image, we can register it into
the model in order to answer the question of whether
the landmark is present in the test image. In addition,
as a natural consequence of the structure of our ap-
proach, the image collection can be cleanly organized
into a hierarchy for browsing.

Since our method efficiently filters out unrelated im-
ages using 2D appearance-based constraints, which are
computationally cheap, and applies more computation-
ally demanding geometric constraints to much smaller
subsets of “promising” images, it is scalable to large
photo collections. Unlike approaches based purely on
SfM, e.g., [Agarwal et al., 2009], it does not require
a massively parallel cluster of hundreds of computing
cores and can process datasets consisting of tens of
thousands of images within hours on a single commod-
ity PC.

The rest of this article is organized as follows. Sec-
tion 2 places our research in the context of other related
work on landmark modeling. In Section 3 we introduce
the steps of our implemented system. Section 4 presents
experimental results on three datasets: the Notre Dame
cathedral in Paris, Statue of Liberty, and Piazza San
Marco in Venice. Finally, Section 5 closes the presenta-
tion with a discussion of limitations and directions for
future work.

An earlier version of this work was originally pre-
sented in [Li et al., 2008]. For the present article, the
system has been completely re-implemented to include
much faster GPU-based feature extraction and geomet-
ric verification, an improved image registration algo-
rithm leading to higher precision and recall, and a new
incremental reconstruction strategy delivering larger and
more complete models. Videos of computed 3D models,
along with complete browsing summaries, can be found
on the project website.1

2 Previous Work

Our system offers a comprehensive solution to the prob-
lems of dataset collection, 3D reconstruction, scene sum-
marization, browsing and recognition for landmark im-
ages. In this section, we discuss related recent work in
these areas.

At a high level, one of the goals of our work can
be described as follows: starting with the heavily con-
taminated output of an Internet image search query,
we want to extract a high-precision subset of images

1 http://www.cs.unc.edu/PhotoCollectionReconstruction
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Fig. 2 Overview of our system. The input to the system is a raw, contaminated photo collection, which is reduced to a collection

of representative iconic images by 2D appearance-based clustering followed by geometric verification. The geometric relationships
between iconic views are captured by the iconic scene graph. The structure of the iconic scene graph is used to automatically generate

3D point cloud models, as well as to impose a hierarchical organization on the images for browsing. Videos of the models, along with

a browsing interface, can be found at www.cs.unc.edu/PhotoCollectionReconstruction.

that are actually relevant to the query. Several exist-
ing approaches consider this problem of dataset collec-
tion for generic visual categories not characterized by
rigid 3D structure[Fergus et al., 2004, Berg and Forsyth,
2006, Li et al., 2007, Schroff et al., 2007, Collins et al.,
2008]. These approaches use statistical models to com-
bine different kinds of 2D image features (texture, color,
keypoints), as well as text and tags. However, for our
specific application of landmark modeling, such statis-
tical models do not provide strong enough geometric
constraints. Philbin and Zisserman [2008], Zheng et al.
[2009] have presented dataset collection and object dis-
covery methods specifically adapted to landmarks. These
methods use indexing based on keypoints followed by
loose geometric verification using 2D affine transfor-
mations or spatial coherence filters. Unlike them, our
method includes an initial stage in which images are
clustered using global image features, giving us a bigger

gain in efficiency and an improved ability to group simi-
lar viewpoints. Another difference between our method
and [Philbin and Zisserman, 2008, Zheng et al., 2009]
is that we perform geometric verification by applying
full 3D SfM constraints instead of loose 2D spatial con-
straints.

To discover all the images belonging to the land-
mark, we first try to find a set of iconic views, corre-
sponding to especially popular and salient aspects. Re-
cently, a number of papers have proposed a very gen-
eral notion of canonical or iconic images as good rep-
resentative images for arbitrary visual categories [Berg
and Berg, 2009, Jing and Baluja, 2008, Raguram and
Lazebnik, 2008]. These approaches try to find iconic im-
ages essentially by 2D image clustering, with some pos-
sible help from additional features such as text. Berg
and Forsyth [2007], Kennedy and Naaman [2008] have
used similar 2D cues to select representative views of
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landmarks without taking into account the full 3D con-
straints associated with landmark scenes.

For rigid 3D object instances, canonical view selec-
tion has been studied both in psychology [Palmer et al.,
1981, Blanz et al., 1999] and in computer vision [Den-
ton et al., 2004, Hall and Owen, 2005, Weinshall et al.,
1994]. Palmer et al. [1981] propose several criteria to
determine whether a view is “canonical”, one of which
is particularly interesting for large image collections:
When taking a photo, which view do you choose? As
observed by Simon et al. [2007], community photo col-
lections provide a likelihood distribution over the view-
points from which people prefer to take photographs. In
this context, canonical view selection can be thought
of as identifying prominent clusters or modes of this
distribution. Simon et al. [2007] find these modes by
clustering images based on the output of local feature
matching and epipolar geometry verification between
every pair of images in the dataset – steps that are
necessary for producing a full 3D reconstruction. While
this solution is effective, it is computationally expen-
sive, and it treats scene summarization as a by-product
of 3D reconstruction. By contrast, we regard summa-
rization as an image organization step that precedes
and facilitates 3D reconstruction.

The first approach for organizing unordered image
collections was proposed by Schaffalitzky and Zisser-
man [2002]. Sparse 3D reconstruction of landmarks from
Internet photo collections was first addressed by the
Photo Tourism system [Snavely et al., 2006, 2008b],
which achieves high-quality reconstruction results with
the help of exhaustive pairwise image matching and
global bundle adjustment of the model after insert-
ing each new view. Unfortunately, this process does
not scale to large datasets, and it is particularly in-
efficient for heavily contaminated collections, most of
whose images cannot be registered to each other. The
Photo Tourism framework is more suited to the case
where a user submits a predominantly “clean” set of
photographs for 3D reconstruction and visualization.
This is precisely the mode of input adopted by the Mi-
crosoft Photosynth software,2 which is based on Photo
Tourism.

After the appearance of Photo Tourism, several re-
searchers have developed more efficient SfM methods
that exploit the redundancy in community photo collec-
tions. In particular, many landmark image collections
consist of a small number of “hot spots” from which
photos are often taken. Ni et al. [2007] have proposed
a technique for out-of-core bundle adjustment that lo-
cally optimizes the “hot spots” and then connects the
local solutions into a global one. In this paper, we fol-

2 http://photosynth.net

low a similar strategy of computing separate 3D recon-
structions on connected sub-components of the scene,
thus avoiding the need for frequent large-scale bundle
adjustment. Snavely et al. [2008a] find skeletal sets of
images from the collection whose reconstruction pro-
vides a good approximation to a reconstruction involv-
ing all the images. However, computing the skeletal set
still requires as an initial step the exhaustive verifica-
tion of all two-view relationships in the dataset. Simi-
larly to Snavely et al. [2008a], we find a small subset of
the collection that captures all the important scene as-
pects. But unlike Snavely et al. [2008a], we do not need
to compute all the pairwise image relationships in the
dataset; instead, we rely on 2D appearance similarity
as a rough approximation of the “true” multi-view re-
lationship, and reduce the number of possible pairwise
relationships to consider through an initial clustering
stage. As a result, our technique is capable of handling
datasets that are an order of magnitude larger than
those in [Snavely et al., 2008a], at a fraction of the run-
ning time. Finally, while we do not assume that our
photo collections contain geolocated images, it should
be noted that when available, this information can be
leveraged to improve efficiency. For instance, an initial
rough clustering could be performed using only geo-
graphic location data, and the obtained cluster centers
could then be used to seed the image-based clustering
process. Additional techniques to combine image-based
techniques with information obtained from geotags can
be found in [Quack et al., 2008, Crandall et al., 2009].

In another related recent work, Agarwal et al. [2009]
present a distributed system for reconstructing very
large-scale image collections. This system uses the core
algorithms from [Snavely et al., 2008b,a], implemented
and optimized to harness the massive parallelism of
multi-core clusters. To speed up the detection of ge-
ometrically related images, Agarwal et al. [2009] use
feature-based indexing in conjunction with approximate
nearest neighbor search [Arya et al., 1998]. They also
use query expansion [Chum et al., 2007] to extend the
initial set of pairwise relationships. Using a compute
cluster with up to 500 cores, the system of Agarwal
et al. [2009] is capable of reconstructing city-scale im-
age collections containing 150,000 images in the span
of a day. These collections are larger than ours, but the
cloud computing solution is expensive: it costs around
$10,000 to rent a cluster of 1000 nodes for a day.3

By contrast, our system runs on a single commodity
PC and uses a combination of efficient algorithms and
low-cost graphics hardware to achieve fast performance.
Specifically, our system currently processes up to 46,000
images in approximately 20 hours using a PC with an

3 http://aws.amazon.com/ec2
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Intel core2 duo processor with 3GHz and 2.5GB RAM
as well as an NVidia GTX 280 graphics card.

Finally, unlike [Agarwal et al., 2009, Ni et al., 2007,
Snavely et al., 2008a,b], our approach is concerned not
only with reconstruction, but also with recognition. We
pose landmark recognition as a binary problem – given
a query image, find out whether it contains an instance
of the landmark of interest – and solve it by attempt-
ing to retrieve iconic images similar to the test query.
To accomplish this task, we use methods common to
other state-of-the-art retrieval techniques, including in-
dexing based on local image features and geometric ver-
ification [Chum et al., 2007, Philbin et al., 2008]. Of
course, alternative formulations of the landmark recog-
nition problem are also possible. For example, Li et al.
[2009] perform multi-class landmark recognition using
a more statistical approach based on a support vector
machine classifier. At present, we have not incorporated
a discriminative statistical model into our recognition
approach. However, we expect that classifiers trained
on automatically extracted sets of iconic images corre-
sponding to many different landmarks would produce
very satisfactory results.

3 The Approach

In this section, we present a description of the compo-
nents of our landmark modeling system. Algorithm 1
gives a high-level summary of these components, and
Figure 2 illustrates the operation of the system.

3.1 Initial Clustering

The first step of our system is to identify a small set
of iconic views to summarize the scene content. Simi-
larly to Simon et al. [2007], we define iconic views as
representatives of dense clusters of similar viewpoints.
However, while Simon et al. [2007] define similarity of
any two views in terms of the number of 3D features
they have in common, we adopt a more perceptual cri-
terion. Namely, if there are many images in the dataset
that share a very similar viewpoint in 3D, then a num-
ber of them will have a very similar image appearance
in 2D, and they can be grouped efficiently using a low-
dimensional global description of their pixel patterns.

The global descriptor we use is gist [Oliva and Tor-
ralba, 2001], which was found to be effective for group-
ing images by perceptual similarity and retrieving struc-
turally similar scenes [Hays and Efros, 2007, Douze
et al., 2009]. We generate a gist descriptor for each
image in the dataset by computing oriented edge re-
sponses at three scales (with 8, 8 and 4 orientations,

Algorithm 1 System Overview
1. Initial clustering (Section 3.1): Run k-means clustering

on global gist descriptors to partition the image collection into

clusters corresponding to approximately similar viewpoints and
scene conditions.

2. Geometric verification and iconic image selection

(Section 3.2): Perform robust pairwise epipolar geometry es-
timation between a few top images in each cluster. Reject all

clusters that do not have enough geometrically consistent im-
ages. For each remaining cluster, select an iconic image as the

image that gathers the most inliers to the other top images,

and discard all cluster images inconsistent with the iconic.
3. Re-clustering and registration (Section 3.3): Perform

clustering and geometric verification on the images discarded

during Step 2. This enables the discovery of smaller iconic clus-
ters. After identifying additional iconic images, make a final

pass over the discarded images and attempt to register them

to any of the iconics.
4. Computing the iconic scene graph (Section 3.4): Regis-

ter each pair of iconic images to each other and create a graph

whose nodes correspond to iconic images, edges correspond
to valid two-view transformations between iconics, and edge

weights are given by the number of feature inliers to the re-
spective transformations. This graph will be used to guide the

subsequent 3D reconstruction process. Use tag information to

reject isolated nodes of the iconic scene graph that are likely
to be semantically unrelated to the landmark.

5. 3D reconstruction (Section 3.5): Efficiently reconstruct

sparse 3D models from the set of images registered to the iconic
representation. The reconstruction proceeds in an incremen-

tal fashion, by first building multiple 3D sub-models from the

iconics, merging them whenever possible, and finally growing
all models by incorporating additional non-iconic images.

respectively), aggregated to a 4 × 4 spatial resolution.
In addition, we augment this gist descriptor with color
information, consisting of a subsampled image, at 4×4
spatial resolution. We thus obtain a 368-dimensional
vector as a representation of each image in the dataset.
We implemented gist extraction as a series of convolu-
tions on the GPU4, achieving computation rates of 170
Hz (see Table 2 for detailed timings).

In order to identify typical views, we cluster the gist
descriptors of all our input images using the k-means
algorithm. In this initial stage, it is acceptable to pro-
duce an over-clustering of the scene, since in subsequent
stages, we will be able to restore links between clusters
that have sufficient viewpoint similarity. For this rea-
son, we set the number of clusters k to be fairly high
(k = 1200 in the experiments, although the outcome is
not very dependent on the exact value used). In all of
our experiments, the resulting clusters capture the pop-
ular viewpoints quite well. In particular, the largest gist
clusters tend to be quite clean (Figure 3). If we rank the
gist clusters in decreasing order of size, we can see that
the top few clusters have a remarkably high precision
(Figure 7, Stage 1 curve).

4 code in preparation for release
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Fig. 3 Snapshots of two gist clusters for the Statue of Liberty dataset. For each cluster, the figure shows the hundred images closest

to the cluster mean. Even without enforcing geometric consistency, these clusters display a remarkable degree of structural similarity.

3.2 Geometric Verification and Iconic Image Selection

Of course, clustering based on low-dimensional global
descriptors has its drawbacks. For one, the gist descrip-
tor is sensitive to image variation such as clutter (for
example, people in front of the camera), lighting condi-
tions, and camera zoom. These factors can cause images
with similar viewpoints to fall into different clusters.
But also, images that are geometrically or semantically
unrelated may end up having very similar gist descrip-
tors and fall into the same cluster. Examples of two
clusters with inconsistent images are shown in Figure 4.
Since we are specifically interested in recovering scenes
with a static 3D structure, we need to enforce strong
geometric constraints to filter out structurally incon-
sistent images from clusters. Thus, the second step of
our system consists of applying a geometric verification
procedure within each cluster.

The goal of geometric verification is to identify clus-
ters that have at least n images that are consistent in
both appearance as well as geometry (in our current im-
plementation, n = 3). To this end, we start by selecting
an initial subset of n representative images from each
cluster by taking the images whose gist descriptors are
closest to the cluster mean. Next, we attempt to esti-
mate the two-view geometry of every pair in this sub-
set. Inconsistent images within this subset are identified
and replaced by the next closest image to the cluster
mean, until a subset of n valid images is found, or all

cluster images are exhausted. To test whether a pair of
images is consistent, we attempt to estimate a two-view
relationship, i.e., epipolar geometry or a homography.
A valid epipolar geometry implies that a fundamen-
tal matrix exists for freely moving cameras capturing a
non-planar scene. A valid homography indicates planar
scene structure or rotating cameras.

The standard first step in the robust fitting of a
two-view relationship is establishing putative matches
between keypoints extracted from both images. We ex-
tract SIFT keypoints [Lowe, 2004] using an efficient in-
house GPU implementation, SiftGPU5, which is capa-
ble of processing 1024×768 images at speeds of 16Hz on
an Nvidia GTX 280. Feature extraction is performed at
a resolution that is suitable for the geometric verifica-
tion task. Empirically, we have observed that SIFT fea-
tures extracted at the resolution of 1024× 768 produce
registration results that are comparable those achieved
at the original resolution. Putative feature matching
is also performed on the GPU. Finding all pairwise
distances between SIFT descriptors in the two images
reduces to multiplication of large and dense descrip-
tor matrices. Thus, our routine consists of a call to
dense matrix multiplication in the CUBLAS library6

with subsequent instructions to apply the distance ra-
tio test [Lowe, 2004] and to report the established cor-

5 Available online: http://cs.unc.edu/∼ccwu/siftgpu/
6 http://developer.download.nvidia.com/compute/cuda/1 0/

CUBLAS Library 1.0.pdf
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Fig. 4 Snapshots of two clusters containing images inconsistent with the dominant 3D structure. By enforcing two-view geometric
constraints, these images (outlined in red) are filtered out.

respondences. To increase the ratio of correct puta-
tive matches, we retain only those correspondences that
constitute a mutual best match in both the forward and
reverse directions.

Once putative matches have been established, we
estimate the two-view relationship between the images
by applying ARRSAC [Raguram et al., 2008], which
is a robust estimation framework capable of real-time
performance. We couple this estimation algorithm with
QDEGSAC [Frahm and Pollefeys, 2006], which is a ro-
bust model selection procedure that accounts for dif-
ferent types of camera motion and scene degeneracies,
returning either an estimate for a fundamental matrix
or a homography depending on the scene structure and
camera motion. If the estimated relation is supported
by less than m inliers (m=18 in the implementation),
the images are deemed inconsistent.

The image that gathers the largest total number of
inliers to the other n−1 representatives from its cluster
is declared the iconic image of that cluster. The inlier
score of each iconic can be used as a measure of the
quality of each cluster. Precision/recall curves in Fig-
ure 7 (Stage 2a) demonstrate that inlier number of the
iconic does a better job than cluster size in separating
the “good” clusters from the “bad” ones. Note, how-
ever, that ranking of clusters based on inlier number
of the iconic does not penalize clusters that have a few
geometrically consistent images but are otherwise filled
with garbage. Once the iconic images for every clus-
ter are selected, we perform geometric verification for
every remaining image by matching it to the iconic of
its cluster and rejecting it if it has fewer than m in-
liers. As shown in Figure 7 (Stage 2b), this individual
verification improves precision considerably.

As can be seen from Table 2 (Stage 2 column), ge-
ometric verification takes just under an hour on the
Statue of Liberty dataset, and just under half an hour
on the two other datasets. It is important to note that
efficiency gains in this step come not only from limit-
ing the number of pairwise geometric verifications, but
also from targeting the verifications towards the right
image pairs. After all, robust estimation of two-view
geometry tends to be fast for images that are geometri-
cally related and therefore have a high inlier ratio, while
for unrelated images, the absence of a geometric rela-
tion can only be determined by carrying out the max-
imum number of RANSAC iterations. Since images in
the same gist cluster are more likely to be geometrically
related, the average number of ARRSAC iterations for
within-cluster verifications is comparably low.

3.3 Re-clustering and Registration

While the geometric verification stage raises the preci-
sion of the registered images, it also lowers the overall
recall by rejecting relevant images that didn’t happen
to be geometrically consistent with the chosen iconic of
their clusters. Such images often come from less com-
mon aspects of the landmark that did not manage to get
their own cluster initially. To recover such aspects, we
pool together all images that were discarded in the pre-
vious step, and apply a second round of clustering and
verification. As in Section 3.2, we select a single iconic
representative per each new valid cluster. As shown in
Table 2, this contributes a substantial number of addi-
tional iconics to the representation.

After augmenting the initial set of iconics, we per-
form a final “cleanup” attempting to match each left-
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over image to the discovered scene structure. In order to
efficiently do this, we retrieve, for each leftover image,
the k nearest iconics in terms of gist descriptor distance
(with k=10 in our current implementation), attempt to
register the image to each of those iconics, and assign it
to the cluster of the iconic with which it gets the most
inliers (provided, of course, that the number of inliers
exceeds our minimum threshold).

As seen in Figure 7 (Stage 3), re-clustering and reg-
istration increases recall of relevant images from 33%
to 50% on the Statue of Liberty, from 46% to 66% on
the San Marco dataset, and from 38% to 60% on Notre
Dame. In terms of computation time, re-clustering and
registration takes about three times as long as the ini-
tial geometric verification (Table 2, Stage 3 column).
The bulk of this time is spent attempting to register
all leftover images to all iconics, since, not surprisingly,
the inlier ratios of such images tend to be relatively
low. Even with the additional computational expense,
the overall geometric verification portion of our algo-
rithm compares quite favorably to that of the fastest
system to date [Agarwal et al., 2009], which uses mas-
sive parallelism and feature-based indexing to speed up
putative matching. On the Statue of Liberty dataset,
our system performs both stages of clustering and veri-
fication on about 46,000 images in approximately seven
hours on one core (Table 2, Totals column). For the
analogous processing stages, Agarwal et al. [2009] re-
port a running time of five hours on 352 cores (in other
words, 250 times more core hours than our system) for
a dataset of only 1.3 times the size.

3.4 Constructing the Iconic Scene Graph

The next step of our system is to build an iconic scene
graph to capture the full geometric relationships be-
tween the iconic views and to guide the subsequent
3D reconstruction process. To do this, we perform fea-
ture matching and geometric verification between each
pair of iconic images. Note that in our experiments, the
number of iconics is orders of magnitude smaller than
the total dataset size (several hundred iconics vs. tens of
thousands initial images), so exhaustive pairwise verifi-
cation of iconics is fast. Feature matching is carried out
using the techniques described in Section 3.2, but the
geometric verification procedure is different. For verify-
ing the geometric consistency of clusters, we sought to
estimate a fundamental matrix or a homography. But
now, as a prelude to the upcoming SfM stage, we seek
to obtain a two-view metric reconstruction.

Pairwise metric 3D reconstructions can be obtained
by the five-point relative pose estimation algorithm [Nistér,
2004] and triangulating 3D points based on 2D feature

matches. This algorithm requires estimates of internal
calibration parameters for each of the cameras. To get
these estimates, we make the zero skew assumption and
initialize the principal point to be in the center of each
image; for the focal length, we either read the EXIF
data or use the camera specs for a common viewing an-
gle. In practice, this initialization tends to be within the
calibration error threshold of 10% tolerated by the five-
point algorithm [Nistér, 2004], and in the latter stages
of reconstruction, global bundle adjustment refines the
calibration parameters.7 Note that the inlier ratios of
putative matches between pairs of iconic images tend to
be very high and consequently, the five-point algorithm
requires very few RANSAC iterations. For instance, in
the Statue of Liberty dataset, of the image pairs that
contain at least 20 putative matches, 80% of the pairs
have an inlier ratio larger than 50%.

After estimating the two-view pose for every pair
of iconic images, we construct the iconic scene graph,
where nodes are iconic images, and the weight of the
edge connecting two iconics is defined to be the num-
ber of inliers to their estimated pose. Iconic pairs with
too few inliers (less than m) are given zero edge weight
and are thus disconnected in the graph. For all of our
datasets, the iconic scene graphs have multiple con-
nected components corresponding to non-overlapping
viewpoints, day vs. night views, or even geographically
separated instances of the landmark (e.g., copies of the
Statue of Liberty in different cities).

In general, lacking GPS coordinates or higher-level
knowledge, we do not have enough information to deter-
mine whether a given connected component is semanti-
cally related to the landmark. However, we have noticed
that single-node connected components are very likely
to be semantically irrelevant. In many cases, they corre-
spond to groups of near-duplicate images taken by a sin-
gle user and incorrectly tagged (see Figure 5). To prune
out such clusters, we use a rudimentary but effective fil-
ter based on image tags. First, we create a “reference
list” of tags that are considered to be semantically rele-
vant to the landmark by taking the tags from all iconic
images that have at least two connections to other icon-
ics (empirically, these are almost certain to contain the
landmark). To have a more complete list, we also incor-
porate tags from the top ten cluster images registered
to these iconics. The tags in the list are ranked in de-
creasing order of frequency. Next, isolated iconic images

7 Note that our initial focal length estimate can be wrong for

cameras with interchangeable lenses. The error can be particu-
larly large for very long focal lengths, resulting in camera center

estimates that are displaced towards the scene points. For exam-

ple, for a zoomed-in view of Statue of Liberty’s head, the esti-
mated camera center may be pushed off the ground towards the

head. Some of this effect is visible in Figure 11.
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Tags: italy liberty florence europe santacroce church firenze

Tags: letterman late show groundzero timesquare
          goodmorningamerica

Tags: newyorkcity fireworks victoria statueofliberty
     queenmary2 queenelizabeth2

Fig. 5 Sample clusters from the Statue of Liberty dataset that were discarded by tag filtering. Each of these clusters is internally

geometrically consistent, but does not have connections to any other clusters. By performing a simple tag-based filtering procedure,

these spurious iconics can be identified and discarded. Note that in downloading the images, we used Flickr’s full text search option,
so that “Statue of Liberty” does not actually show up as a tag on every image in the dataset.

are scored based on the median rank of their tags in the
reference list. Tags that do not occur in the list at all
are assigned an arbitrary high number. Clusters with
a high median rank are considered to be unrelated to
the landmark and removed from the dataset. As shown
by the Stage 4 curves in Figure 7, this further improves
precision over the previous appearance- and geometry-
based filtering stages.

3.5 Reconstruction

This section describes our novel incremental approach
to reconstructing point cloud 3D models from the set
of iconic images. The algorithm starts by building mul-
tiple 3D sub-models covering the iconic scene graph,
then it looks for common 3D features to merge different
sub-models, and finally, it grows the resulting models
by registering into them as many additional non-iconic
views as possible. The sequence of these steps is shown
in Algorithm 2 and discussed in detail below.

To initialize the process of incremental 3D recon-
struction, we pick the pair of iconic images whose two-
view reconstruction (computed as described in Section
3.4) has the highest inlier number and delivers a suffi-
ciently low reconstruction uncertainty, as computed by
the criterion of Beder and Steffen [2006]. Next, we it-
eratively register additional cameras to this model. At
each iteration, we propagate correspondences from the
reconstructed 3D points to the iconics not yet in the
model that see these points. Then we take the iconic
that has the highest number of correct 2D-3D corre-
spondences to the current sub-model, register it to the

sub-model, and triangulate new 3D points from 2D-2D
matches between the iconic and other images already
in the model. After each iteration, the 3D sub-model
and camera parameters are optimized by an in-house
implementation of fast non-linear sparse bundle adjust-
ment8. If no further iconics have enough 2D-3D inliers
to the current sub-model, the process starts afresh by
picking the next best pair of iconics not yet registered
to any sub-model. Thus, by iterating over the pool of
unregistered iconic images, multiple 3D sub-models are
reconstructed.

The above process may produce multiple sub-models
that contain overlapping 3D structure and even share
some of the same images, but that were not recon-
structed together because neither one of the models
has a single iconic with a sufficient number of 2D-3D
matches to another model. Instead, such models may be
linked by a larger number of images having relatively
few correspondences each. To account for this case, ev-
ery time we finish constructing a sub-model, we collect
all 3D point matches between it and each of the mod-
els already reconstructed, and merge it with a previous
model provided a sufficient number of such matches ex-
ist (≥ 25, in our experiments). The merging step uses
ARRSAC to robustly estimate a similarity transforma-
tion based on the identified 3D matches.

Even after the initial merging, we may end up with
several separate sub-models coming from the same con-
nected component of the iconic scene graph. This hap-
pens when none of the connections between iconic im-
ages in different sub-models are sufficient for direct reg-

8 Available online: http://cs.unc.edu/∼cmzach/oss/SSBA-

1.0.zip
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Algorithm 2 Incremental Reconstruction
Extract connected components of the iconic scene graph and

their spanning trees.

for each connected component do

[Incrementally build and merge sub-models.]

while suitable initial iconic pairs exist do
Create 3D sub-model from initial pair.

while there exist unregistered iconic images with enough

2D-3D matches to sub-model do
Extend the sub-model to the image with the most 2D-

3D matches.

Perform bundle adjustment to refine the sub-model.
end while

Check for 3D matches between current sub-model and

other sub-models in the same component and merge sub-
models if there are sufficient 3D matches.

end while

[Attempt to discover non-iconic links between models.]

for each pair of sub-models connected in the spanning tree
do

Search for additional non-iconic images to provide com-

mon 3D points between the sub-models (see text).
If enough common 3D points are found, merge the sub-

models.

end for

[Grow models by registering non-iconic images.]

for each 3D model do
while there exist unregistered non-iconic images with

enough 2D-3D matches to the model do
Expand model by adding non-iconic image with high-

est number of 2D-3D correspondences.

If more than 25 images added to model, perform bun-
dle adjustment.

end while

end for

end for

istration. To successfully merge such models, we need
to search for additional non-iconic images to provide
the missing links. To identify the most promising merg-
ing locations, we consider the maximal spanning tree
(MST) of the iconic scene graph. In this representa-
tion, each sub-model reconstructs a subset of images in
a MST. We consider neighbouring pairs of source and
target iconics that belong to two different models and
are connected by an edge of the MST, and we search
for non-iconic images that can be registered to both of
them. The search is conducted in the iconic clusters of
the source and the target, as well as in the clusters of
other iconics connected to the source in the MST (Fig-
ure 6). To maintain efficiency, we stop the search af-
ter finding five images with a sufficient number (≥ 20)
of correspondences both to the source and the target.
The triplet correspondences are then registered into the
3D sub-models of the source and the target, providing
common 3D points for merging. We apply an analogous

linking process to attempt to register iconic images that
could not be placed in any 3D sub-model.

At this point, most of the models having common
structure are typically merged together, and in their
totality, the models cover most of the scene content
present in the iconic images. In the last stage of the
reconstruction algorithm, we try to make the models
as complete as possible by incorporating non-iconic im-
ages from clusters of the registered iconics. This process
takes advantage of feature matches between the non-
iconic images and their respective iconics that were es-
tablished during the earlier geometric verification stage
(Section 3.2). The 2D matches between the image and
its iconic determine 2D-3D correspondences between
the image and the 3D model into which the iconic is
registered, and ARRSAC is used to determine the cam-
era pose. Since the model structure at this point tends
to be fairly stable, we carry out a full bundle adjust-
ment after adding every 25 images. Detailed results of
our 3D reconstruction algorithm are shown in Figures
11-16, and timings are presented in Table 3.

4 Experimental Results

We have tested our system on three large landmark
image datasets: the Statue of Liberty (47,238 images),
Piazza San Marco in Venice (45,322 images), and the
Notre Dame cathedral in Paris (11,900 images). Each
of these datasets presents different challenges for our
system: for example, the relative lack of texture on
the Statue of Liberty poses a problem for SIFT-based
matching, while the often cluttered San Marco square
poses a challenge for gist clustering.

4.1 Data Collection

The datasets used for evaluation were automatically
downloaded from Flickr.com using keyword searches.
We randomly split each dataset into a “modeling” part,
which forms the input to the system described in Sec-
tion 3, and a much smaller independent “testing” part,
which will be used to evaluate recognition performance
in Section 4.4. Because the modeling datasets contain
tens of thousands of images, we have chosen to label
only a small randomly selected fraction of them. Note
that the ground-truth labels are not used by the mod-
eling algorithm itself; they are needed only to measure
recall and precision for the different stages described in
Sections 3.1-3.4. The smaller test sets are completely
labeled. Our labeling is very basic, merely recording
whether the landmark is present in the image or not,
without evaluating the quality or geometric fidelity of
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… …maximal 
spanning 

treesub-model 1

…
cluster of iconic connected to sourcecluster of iconic connected to source

…
source source cluster 

…
target clustertarget target cluster 

sub-model 2
…

g

potential links between source and target

Fig. 6 3D sub-model merging: The target and source iconics are not registered in the same 3D sub-model due to a lack of common

3D points. In this case, the source iconic is registered to a sub-model encompassing mainly the front of the San Marco square, and
the target is registered to a sub-model of the back of the square. To merge the two sub-models, we need to find additional non-iconic

images matching both the source and the target. We search for such images in the clusters of the source and target iconic, as well as

in the clusters of other iconics connected to the source. The found matching images are then used to establish common 3D points to
register the two 3D sub-models.

Modeling Testing

Dataset Unlabeled Pos. Neg. Pos. Neg.

Statue of Liberty 43,845 1,383 918 631 461

San Marco 39,003 2,094 3,131 384 710
Notre Dame 9,776 562 518 546 498

Table 1 Summary statistics of the datasets used in this paper.
The columns list the numbers of labeled and unlabeled images for
the modeling and testing phases. Links to all the Flickr images
from the datasets can be downloaded from our project website.

a given view. In particular, artistic depictions of land-
marks are labeled as positive, even though they can-
not be registered to our iconic representation using SfM
constraints. Table 1 gives a breakdown of the numbers
of labeled and unlabeled images in each of our datasets.
The proportions of negative images (40% to 60%) give
a good idea of the initial amount of contamination.

4.2 Modeling Results

Figure 7 shows a quantitative evaluation of the perfor-
mance of each of the successive modeling stages of our
approach, corresponding to stages 1-4 in Algorithm 1.
Performance is measured in terms of recall (i.e., out of
all the “positive” landmark images in the dataset, how
many are incorporated into the iconic representation at
the given stage) and precision (out of all the images
currently incorporated, what proportion are “positive”
landmark images). Stage 1 in Figure 7 corresponds to
ranking images based on the size of their gist clusters.
Precision starts off very high for the few largest clus-
ters, but drops off rapidly for the smaller clusters. The
geometric verification step improves the precision due
to the removal of inconsistent clusters (Stage 2a), as
does registering all images to the iconic of their gist
cluster (Stage 2b). However, geometric verification de-
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creases recall due to rejecting positive images not con-
sistent with the iconic of their cluster. The reclustering
and registration stage allows us to incorporate such im-
ages into additional iconic clusters, leading to improved
recall (Stage 3). Finally, the tag filtering stage results
in the removal of geometrically consistent, but seman-
tically irrelevant clusters, leading to an additional in-
crease in precision (Stage 4). Thus, every step of our
modeling framework is well justified in terms of increas-
ing either the precision or the recall of the iconic rep-
resentation. In the end, we get over 90% precision and
47-64% recall on all datasets. The imperfect precision
is due to images being registered to semantically irrele-
vant iconics, as discussed next, while the recall rates re-
flect the proportion of “unregistrable” positive images,
as discussed further in Section 4.4.

Figures 8, 9 and 10 show the sets of iconic images
(iconic summaries) generated by our system from each
of the three datasets. For the most part, these sum-
maries are very clean and complete, with just a few
irrelevant or ambiguous iconics. For example, the sum-
mary for the Statue of Liberty dataset includes a few
iconics corresponding to views of lower Manhattan, El-
lis Island, and an M&M statue that parodies the Statue
of Liberty. The iconic summary of San Marco contains
a few views of Castillo de San Marcos in Florida, while
the summary for Notre Dame contains some views of
Notre Dame cathedrals in Montreal and Indiana that
did not get removed by our tag-based filtering step (Sec-
tion 3.4).

Table 2 shows running times for Stages 1-3 of the
modeling pipeline (Stage 4, corresponding to pairwise
matching of iconic images, is included in the reconstruc-
tion timings of Table 3). All the processing was done on
a single commodity PC with an Intel core2 duo proces-
sor with 3GHz, 2.5GB RAM and an NVidia 280GTX
graphics card. Total modeling times are about 2.5 hours
for the Notre Dame dataset, and just under seven hours
for the Statue of Liberty and San Marco datasets. The
table also lists the number of iconics present at the end
of each respective stage, along with the total number
of images that the system was able to register to the
iconics.

4.3 Reconstruction Results

Figure 11 shows 3D models reconstructed from the Statue
of Liberty dataset. The largest model (Figure 11 (a))
incorporates front and side views of the Statue of Lib-
erty in New York. We obtain a separate model for the
back view of the Statue (Figure 11 (b)). The front and
back models are not merged because of a lack of con-
necting intermediate views in the dataset, with the lack

of texture on the statue posing an additional challenge.
Figure 12 shows additional models obtained from this
dataset, including the interior of the Ellis Island Na-
tional Monument, and copies of the statue in Las Ve-
gas and Tokyo. For the latter two, we obtain separate
models for day and night views of the same scene. The
merging of the day and night models fails because the
drastic illumination change makes SIFT feature match-
ing unreliable.

Figure 13 (a) shows the biggest reconstructed model
for the San Marco dataset. Unlike the earlier version of
our system [Li et al., 2008], the current implementation
is able to obtain a single, complete model of the entire
square. The model is merged from three initially sep-
arate sub-models: a sub-model encompassing the front
of the square and the cathedral, and day and night sub-
models of the sides and back of the square. Given that
the feature matches between the day and night compo-
nents are fewer and less reliable than matches within
components, the walls of the square from the merged
models do not align perfectly, as illustrated in Figure 13
(b). Figure 14 shows two additional San Marco models:
one of the interior of the cathedral, and another one of
the side of the cathedral as seen from the courtyard of
the Doges’ Palace.

Figure 15 (a) shows the biggest Notre Dame model,
which incorporates 1,300 views of the cathedral facade.
Figure 15 (b,c) shows two additional models, for the
back and side of the cathedral. These two models are
not merged together because the parts of the cathedral
structure visible from the two vantage points are es-
sentially orthogonal to each other. The back and side
models are also not merged with the front, which is
less surprising because there are almost no photographs
that can simultaneously see the facade and any other
part of the cathedral structure. Finally, Figure 16 shows
a couple of models constructed from different parts of
the cathedral’s interior.

Table 3 lists timings for the 3D reconstruction stage,
along with the numbers of reconstructed images for
each of the three datasets. For example, for the Statue
of Liberty, our reconstruction process registers 9,934
images in about 13 hours. This running time is com-
parable to that of Agarwal et al. [2009], who register
about 12,000 images from their Dubrovnik dataset in
16.5 hours on a single core (note that reconstruction is
much harder to parallelize than pairwise image match-
ing and geometric verification). Combining the totals
from Tables 2 and 3, the overall modeling and recon-
struction times are about 20 hours for Statue of Liberty,
14 hours for San Marco, and 9 hours for Notre Dame.
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Final Final
recall precision

Stage 1 1.0 0.60
Stage 2a 0.81 0.72

Stage 2b 0.33 0.95

Stage 3 0.50 0.94
Stage 4 0.47 0.95

Final Final
recall precision

Stage 1 1.0 0.40
Stage 2a 0.87 0.53

Stage 2b 0.46 0.92

Stage 3 0.66 0.92
Stage 4 0.64 0.94

Final Final
recall precision

Stage 1 1.0 0.52
Stage 2a 0.70 0.66

Stage 2b 0.38 0.91

Stage 3 0.60 0.89
Stage 4 0.60 0.92

Fig. 7 Top: Recall/precision curves for modeling. Bottom: summary of final (rightmost) precision and recall values for each curve.
The different stages correspond to stages 1-4 in Algorithm 1. Stage 1: Clustering using gist and ranking each image by the size of

its gist cluster (Section 3.1). Stage 2a: Geometric verification of iconics and ranking each image by the inlier number of its iconic

(Section 3.2). The recall is lower because inconsistent clusters are rejected. Stage 2b: Registering each image to its iconic and ranking
the image by the number of inliers of the two-view transformation to the iconic (Section 3.2). Unlike in the first two stages, images

are no longer arranged by cluster, but ranked individually by this score. The recall is lower because images with not enough inliers

to estimate a two-view transformation are rejected. Stage 3: Images discarded in the previous stages are subject to a second round
of re-clustering and geometric verification (Section 3.3). This results in an increase in recall due to the discovery of additional iconic

clusters. Stage 4: Tag information is used to discard semantically unrelated clusters (Section 3.4). Note the increase in precision due
to the removal of spurious iconics.

Feature Stage 1 Stage 2 Stage 3

extraction Gist Geometric Re-clustering Totals

Gist SIFT clustering verification and registration

Dataset Timing Timing Timing Timing Initial Timing Additional Timing Total Images
hrs:min hrs:min hrs:min hrs:min iconics hrs:min iconics hrs:min iconics registered

Liberty 0:04 2:12 0:21 0:56 260 3:21 212 6:53 454 13,888

San Marco 0:04 3:18 0:19 0:24 270 2:47 195 6:52 417 12,253

Notre Dame 0:01 0:57 0:03 0:22 211 1:02 81 2:25 249 3,058

Table 2 Summary statistics for the modeling stage of the processing pipeline, wherein the raw image collection is reduced to a set of

representative iconic images. The table lists the time taken for each stage of processing, along with the total number of iconic images
present at each step. The summary column lists the final number of iconics, along with the total number of images that could be

registered to these iconics. Note that the final number of iconics reflects the results following the tag-filtering step, where some iconics

are rejected from each dataset. Specifically, this step rejects 20 iconics from the Statue of Liberty dataset, 47 from the San Marco
dataset, and 43 from the Notre Dame dataset. The timing for this step is on the order of a few seconds, and is thus omitted from the

table.

4.4 Recognition Results

This section considers the problem of landmark recog-
nition, which we formulate as follows: given an image
that was not in the initial collection, attempt to regis-
ter it into our iconic representation and report success
or failure. This can be useful in order to perform on-
line updating of the 3D models or simply to answer the
question of whether the image contains the landmark

of interest. In our formulation, landmark recognition is
conceptually very close to the task of registering left-
over images in Stage 3 of our modeling pipeline (Sec-
tion 3.3). In this section, we take a closer look at this
task with a few new goals in mind. First, a separate
evaluation of recognition performance allows us to test
important implementation choices that we have not yet
examined, such as the use of keypoint-based indexing
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Fig. 8 Iconic summary of the Statue of Liberty dataset, containing 454 iconic images. Iconic images depict copies of the Statue in New
York, Las Vegas, and Tokyo. There are also a few technically spurious, but related iconics corresponding to views of lower Manhattan,
Ellis Island, and an M&M statue that parodies the Statue of Liberty.
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Fig. 9 Iconic summary of the San Marco dataset, containing 417 iconic images. This summary retains a few spurious iconics that did
not get rejected by our tag filtering step, including views of Castillo de San Marcos in Florida (see also Figure 20-B).
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Fig. 10 Iconic summary of the Notre Dame dataset, containing 249 iconic images. There are a few unrelated iconics showing Notre
Dame cathedrals in Indiana and Montreal (see also Figure 20-A).

instead of gist descriptors for image matching. Second,
it allows us to quantify the extent to which our iconic
summaries are representative of all landmark images
marked as positive by human observers. Third, by ex-
amining individual examples of successful and unsuc-
cessful recognition (Figures 18-20), we can get a better
idea of the factors that limit the recall and precision of
our system.

We perform recognition by treating the test image
as a retrieval query against the database of iconic im-
ages belonging to the landmark of interest. Specifically,
we retrieve one or more iconic images that obtain the
highest matching score with the test image (according
to a given retrieval scheme) and make a yes/no deci-
sion by setting a threshold on the retrieval score. We
evaluate performance quantitatively by plotting a re-
call/precision curve of the test images ordered from
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(a) Two views of the Statue of Liberty in New York (9025 cameras, 34234 3D points, 2024119 2D projections).

(b) The back side of the Statue of Liberty (171 cameras, 3131 3D points, 43557 2D projections).

Fig. 11 Selected final models of the Statue of Liberty dataset. In this and the following model figures, the inset images give repre-

sentative views of the 3D structure covered by the model.
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(a) The interior of the Ellis Island National Monument (73 cameras, 3267 3D points, 13741 2D projections).

(b) The Statue of Liberty in Las Vegas. Left: day model (223 cameras, 6976 3D points, 40249 2D projections), right: night model

(148 cameras, 10240 3D points, 45740 2D projections).

(c) The Statue of Liberty in Tokyo. Left: day model (146 cameras, 3221 3D points, 28223 2D projections), right: night model (27
cameras, 1658 3D points, 7949 2D projections).

Fig. 12 Additional models constructed from the Statue of Liberty dataset.

highest to lowest score. Figure 17 shows the results for
several retrieval strategies, which are as follows:

1. Retrieve images using tag information. This strat-
egy is meant mainly as a baseline to demonstrate
the discriminative power of tags alone, and as such,
it employs a very simple scoring scheme. Given a
test image with associated tags, we retrieve the sin-

gle iconic image that contains the largest fraction of
these tags. It can be seen from Figure 17 that by
itself, this scheme is quite unreliable.

2. Compare the test image to the iconics using either
gist descriptors or a bag-of-features representation
using the vocabulary tree indexing scheme [Nister
and Stewenius, 2006]. In either case, the retrieval
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(a) Two views of the San Marco Square model (10338 cameras, 74559 3D points, 3453752 2D projections).

(b) Overhead view of the square highlighting misalignment artifacts between day and night sub-models. The two sample
views come from different models and give rise to inconsistent structure due to a lack of direct feature matches.

Fig. 13 Biggest reconstructed 3D model for the San Marco dataset.
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Fig. 14 Additional models reconstructed from the San Marco Square dataset. Left: the nave of the church (81 cameras, 8585 3D

points, 45164 2D projections). Right: the side of the church (90 cameras, 6439 3D points, 46947 2D projections).

Construction of Link discovery and Expansion of models

Dataset initial sub-models merging of sub-models with non-iconic images Total

Timing Reconstructed Timing Reconstructed Timing Reconstructed Timing
hrs:min iconics hrs:min images hrs:min images hrs:min

Liberty 0:32 309 2:51 434 9:34 9,934 12:57
San Marco 0:28 317 0:39 424 6:07 10,429 7:14

Notre Dame 0:10 115 0:21 186 5:46 2,371 6:17

Table 3 Summary statistics of the steps of our 3D reconstruction (refer back to Section 3.5). Note that the first stage, construction

of sub-models, includes the time for finding metric reconstructions between pairs of iconics and constructing the iconic scene graph.

It can be seen that significantly large datasets can be processed on the order of a few hours.

score is the similarity (or inverse distance) between
the query and the single best-matching iconic. The
performance of gist descriptors is shown in Figure
17 (a), and the performance of the vocabulary tree
is shown in (b). For San Marco and Notre Dame,
gist and vocabulary tree have roughly similar per-
formance. However, for the Statue of Liberty, the
performance of the vocabulary tree is almost dis-
astrous – even worse than that of the tag-based
baseline. This is due to the relative lack of texture
in many Statue of Liberty images, which gives too
few local feature matches for the vocabulary tree
to work reliably. The strong performance of global
features as compared to local ones validates our im-
plementation choice of relying so extensively on gist
descriptors, given that local features are often pre-
ferred in image search applications [Douze et al.,
2009]. Our results seem to indicate that, provided
that we query against a set of sufficiently diverse

and representative views, global features will work
well for retrieval.

3. Retrieve the top k candidate iconics using either
gist or vocabulary tree and perform geometric veri-
fication with each candidate as described in Section
3.2. In this case, the retrieval score is the number
of inliers to a two-view transformation (homogra-
phy or fundamental matrix) between the test image
and the best-matching iconic. It can be seen that
for both kinds of descriptors, geometric verification
significantly improves accuracy, as does retrieving
more candidate iconics for verification (we show re-
sults for k = 1, 5, and 20). A high inlier score is a
strong indication of the presence of the landmark,
whereas a very low inlier score is inconclusive. The
colored circles on the curves labeled “GIST+kNN”
or “VocTree+kNN” correspond to an inlier thresh-
old of 18, which represents the point up to which
a classification can be made with reasonable con-
fidence. Note that this is the same threshold that
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(a) The front side of the Notre Dame Cathedral (1300 cameras, 65022 3D points, 1121931 2D projections).

(b) The back side of the cathedral (487 cameras, 23656 3D points, 199699 2D projections).

(c) The right side of the cathedral (94 cameras, 5414 3D points, 31171 2D projections).

Fig. 15 The three largest final models of the Notre Dame dataset.
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Fig. 16 Two models for different parts of the Notre Dame cathedral interior. The model on the left consists of 118 cameras, 5167 3d

points and 28398 2D projections. The model on the right consists of 65 cameras, 6458 3D points and 2D 30609 projections.

is used for geometric verification of images against
iconics during modeling (Section 3.2). We can see
that the best recall rates reached on the test sets
for this threshold are all in the 60% range, which is
comparable to the recall rates of images registered
into the iconic representation during modeling (Fig-
ure 7).

Figure 18 shows successful recognition examples for
the three datasets. It can be seen that our system is
able to return a correct match in the presence of occlu-
sions (18-B). In addition, in the case of almost identical
landmarks occurring in different locations, such as the
Statue of Liberty in Tokyo (18-A), we are able match
the test image to the correct instance of the landmark.
Correct matches are also returned for some atypical
views, such as photographs taken from inside of the
Notre Dame Cathedral (18-C).

Figure 19 shows some typical false negatives where
a test image containing the landmark does not gather
enough inliers to any of the iconics. For instance, in the
case where the landmark occupies only a very small
area of the image (19-A), neither gist descriptors nor
feature-based geometric verification provide strong ev-
idence in favor of the image. Artistic depictions of the
landmark (19-B) fail geometric verification, while sig-
nificantly atypical views (19-C) may not have match-
ing iconics. Based on the recall rates for modeling and
testing presented in Figures 7 and 17, it appears that
roughly 40% of all images labeled as positive by human
observers fall into the above “unregistrable” categories.

As a consequence of the strong geometric constraints
enforced in our system, false positives (or images that
hurt precision) are significantly less frequent. Two ex-
ample cases are shown in Figure 20, where the error
arises because the set of iconic images itself contains
false positives. For example, the iconics for the Notre
Dame dataset include images of the Notre Dame Basil-

ica in Montreal (20-A), and the iconics for the San
Marco dataset include images of the Castillo de San
Marcos in Florida (20-B).

4.5 Browsing

As a final application of the proposed iconic scene rep-
resentation, we describe how to hierarchically organize
landmark images for browsing.

Iconic scene graphs tend to contain clusters of icon-
ics that have strong geometric connections among them,
corresponding to dominant aspects of the landmark.
We identify these components by partitioning the graph
using normalized cuts (N-cuts) [Shi and Malik, 2000].
The N-cuts algorithm requires the desired number of
components to be specified as input. We have found
that specifying 40 to 50 components produces accept-
able results for all our datasets. Note that in our earlier
work [Li et al., 2008], N-cuts was also used to initialize
sub-models during reconstruction. Since then, we have
found that hard initial partitioning is not as conducive
to model merging as the incremental scheme of Section
3.5; however, N-cuts still produce very good results for
the application of browsing.

The components of the iconic scene graph form the
top level of the browsing hierarchy. The second level
of the hierarchy consists of iconic images grouped by
component. The user can click on the representative
iconic of each component (which we select to be the
iconic with the largest gist cluster) to “expand” the
component and see all the iconic images that belong to
it. The third level consists of all remaining non-iconic
images in the dataset grouped by the iconic of their gist
cluster. During interactive browsing, each iconic image
can be expanded to show all the images from its cluster,
which will all tend to be very similar in appearance to
the iconic. Figure 21 gives a snapshot of this three-level
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Fig. 17 Recall/precision curves for testing. The different retrieval strategies are as follows. GIST 1NN (resp. VocTree 1NN):

retrieval of the single nearest iconic using the gist descriptor (resp. vocabulary tree); GIST kNN+Match (resp. VocTree
kNN+Match): retrieval of k nearest exemplars using gist (resp. vocabulary tree) followed by geometric verification; Tag: tag-based

ranking. The colored circles on the curves correspond to an inlier threshold of 18.
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A

GIST

Vocabulary tree

Score: 58 Score: 24 Score: 21 Score: 7 Score: 7

B

C

GIST

GIST

Vocabulary tree

Vocabulary tree

Score: 58 Score: 34 Score: 30 Score: 21 Score: 10

Score: 51 Score: 31 Score: 27 Score: 19 Score: 9

Score: 31 Score: 26 Score: 21 Score: 14 Score: 8

Score: 41 Score: 32 Score: 29 Score: 26 Score: 0

Score: 41 Score: 32 Score: 32 Score: 15 Score: 8

Fig. 18 An illustration of one successful case for image retrieval for each dataset. In each of the examples A-C, the query image is on

the left. On the right, the top row shows the top five iconics closest to the query in terms of gist distance, re-ranked by the number
of inliers to an estimated two-view transformation. As discussed in the text, inlier threshold of 18 corresponds to reliable registration.

The bottom row shows analogous results for the closest five iconics according to the vocabulary tree score.

organization for the Statue of Liberty dataset. All three
datasets can be browsed interactively on our website9.

5 Conclusion

In this article, we have presented a scalable, unified so-
lution to the problems of dataset collection, scene sum-
marization, browsing, 3D reconstruction, and recogni-
tion for landmark image collections gathered from the

9 www.cs.unc.edu/PhotoCollectionReconstruction

Internet. By efficiently combining 2D appearance cues
with 3D geometric constraints, we are able to robustly
deal with the significant amount of clutter present in
community-contributed photo collections. Our imple-
mented system can process up to fifty thousand images
on a single commodity PC in roughly a day. While there
remains much scope for further optimization, this al-
ready represents an order of magnitude improvement
over existing techniques that do not make use of cloud
computing.
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Score: 0 Score: 0 Score: 8 Score: 7 Score: 8

Fig. 19 Typical false negatives, or test images that could not be reliably registered to any of the iconics. The layout of the figure is

the same as that of Figure 18.

A number of interesting research challenges remain
open. In order to further scale our system, we need to
be able to perform the initial gist clustering step in
memory for much larger datasets. To this end, we are
currently exploring techniques for compressing gist de-
scriptors to short binary strings whose Hamming dis-
tances approximate Euclidean distances in the original
feature space [Torralba et al., 2008].

Currently, we assume that the iconic scene graph is
small enough (a few hundred iconic images), so that it
can be computed by exhaustive pairwise matching of
iconics and traversed exhaustively during SfM. Scaling
to much larger graphs will require feature-based index-

ing of iconic images, as well as graph simplification tech-
niques similar to those of Snavely et al. [2008a]. It may
also necessitate the development of efficient out-of-core
bundle adjustment techniques similar to [Ni et al., 2007]
that use the connectivity of the iconic scene graph.

One of the limitations of our current system actually
stems from its greatest source of efficiency, namely, its
reliance on iconic images. By definition, iconic images
correspond to “popular” viewpoints from which many
people take photos of a landmark. While this helps in
drastically reducing the redundancy that is present in
community photo collections, it can pose difficulties
when merging two 3D sub-models, where non-iconic
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Vocabulary Tree
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A

B

Score: 97 Score: 45 Score: 10 Score: 10 Score: 8

Score: 45 Score: 9 Score: 8 Score: 8 Score: 8

Score: 110 Score: 86 Score: 8 Score: 0 Score: 7

Score: 110 Score: 9 Score: 0 Score: 0 Score: 0

Fig. 20 An illustration of the less common case of false positives in landmark recognition. In both examples, the error arises due to the
presence of an iconic image that represents a different, though similarly named landmark. The top matching iconic in A corresponds

to the Notre Dame Basilica in Montreal, while the matching iconic in B is of the Castillo de San Marcos in Florida.

Level 1
Level 2

Level 3

Fig. 21 Hierarchical organization of the dataset for browsing. Level 1: components of the iconic scene graph. Level 2: Each component
can be expanded to show all the iconic images associated with it. Level 3: each iconic can be expanded to show the images associated

with its gist cluster. Our three datasets may be browsed online at www.cs.unc.edu/PhotoCollectionReconstruction.
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views may be required to provide the intermediate con-
nections. While the link discovery method described in
Section 3.5 is able to recover some missing links, it is
not always successful. In the future, we plan to work
on improved link discovery algorithms that use more
sophisticated image retrieval techniques such as query
expansion to find rare connecting views.

Illumination changes pose another major challenge
for modeling and recognition. In fact, as discussed in
Section 4, one of the biggest causes of failure for 3D
model merging is a difference in the lighting between
the two components (i.e., day vs. night). Methods for
illumination modeling like those of Haber et al. [2009]
may help in addressing this problem.
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Matthijs Douze, Hervé Jégou, Harsimrat Sandhawalia,
Laurent Amsaleg, and Cordelia Schmid. Evaluation
of gist descriptors for web-scale image search. In
International Conference on Image and Video Re-
trieval, 2009.

Rob Fergus, Pietro Perona, and Andrew Zisserman. A
visual category filter for Google images. In ECCV,
2004.

J.-M. Frahm and M. Pollefeys. RANSAC for (quasi-)
degenerate data (QDEGSAC). In CVPR, volume 1,
pages 453–460, 2006.

Tom Haber, Christian Fuchs, Philippe Bekaert, Hans-
Peter Seidel, Michael Goesele, and Hendrik P.A.
Lensch. Relighting objects from image collections.
In Proceedings of CVPR, 2009.

P. Hall and M. Owen. Simple canonical views. In
BMVC, pages 839–848, 2005.

James Hays and Alexei A. Efros. Scene completion
using millions of photographs. In SIGGRAPH, 2007.

Yushi Jing and Shumeet Baluja. Visualrank: Applying
PageRank to large-scale image search. PAMI, 30:
1877–1890, 2008.

L. Kennedy, S.-F. Chang, and I. Kozintsev. To search or
to label?: Predicting the performance of search-based
automatic image classifiers. In ACM Multimedia In-
formation Retrieval Workshop (MIR 2006), 2006.

Lyndon Kennedy and Mor Naaman. Generating diverse
and representative image search results for land-
marks. In Proceedings of the Seventeenth Interna-
tional World Wide Web Conference (WWW 2008),
2008.

Li-Jia Li, Gang Wang, and Li Fei-Fei. Optimol: auto-
matic object picture collection via incremental model
learning. In CVPR, 2007.

X. Li, C. Wu, C. Zach, S. Lazebnik, and J.-M. Frahm.
Modeling and recognition of landmark image collec-
tions using iconic scene graphs. In ECCV, 2008.

Yunpeng Li, David J. Crandall, and Daniel P. Hutten-
locher. Landmark classification in large-scale image



28

collections. In ICCV, 2009.
D. Lowe. Distinctive image features from scale-

invariant keypoints. IJCV, 60(2):91–110, 2004.
Kai Ni, Drew Steedly, and Frank Dellaert. Out-of-core

bundle adjustment for large-scale 3d reconstruction.
In ICCV, 2007.

D. Nistér. An efficient solution to the five-point relative
pose problem. PAMI, 26(6):756–770, 2004.

D. Nister and H. Stewenius. Scalable recognition with
a vocabulary tree. In CVPR, 2006.

Aude Oliva and Antonio Torralba. Modeling the shape
of the scene: a holistic representation of the spatial
envelope. IJCV, 42(3):145–175, 2001.

S. Palmer, E. Rosch, and P. Chase. Canonical perspec-
tive and the perception of objects. Attention and
Performance, IX:135–151, 1981.

J. Philbin and A. Zisserman. Object mining using a
matching graph on very large image collections. In
Proceedings of the Indian Conference on Computer
Vision, Graphics and Image Processing, 2008.

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zis-
serman. Lost in quantization: Improving particular
object retrieval in large scale image databases. In
CVPR, 2008.

Till Quack, Bastian Leibe, and Luc Van Gool. World-
scale mining of objects and events from community
photo collections. In Proceedings of the 2008 interna-
tional conference on Content-based image and video
retrieval, CIVR ’08, pages 47–56, New York, NY,
USA, 2008. ACM.

Rahul Raguram and Svetlana Lazebnik. Computing
iconic summaries of general visual concepts. In Work-
shop on Internet Vision CVPR, 2008.

Rahul Raguram, Jan-Michael Frahm, and Marc Polle-
feys. A comparative analysis of RANSAC techniques
leading to adaptive real-time random sample consen-
sus. In ECCV, 2008.

Frederik Schaffalitzky and Andrew Zisserman. Multi-
view matching for unordered image sets, or ”how do i
organize my holiday snaps?”. In ECCV ’02: Proceed-
ings of the 7th European Conference on Computer
Vision-Part I, pages 414–431, 2002.

F. Schroff, A. Criminisi, and A. Zisserman. Harvesting
image databases from the web. In ICCV, 2007.

J. Shi and J. Malik. Normalized cuts and image seg-
mentation. PAMI, 22(8):888–905, 2000.

B. Sigurbjörnsson and R. van Zwol. Flickr tag recom-
mendation based on collective knowledge. In WWW,
2008.

Ian Simon, Noah Snavely, and Steven M. Seitz. Scene
summarization for online image collections. In ICCV,
2007.

N. Snavely, S. M. Seitz, and R. Szeliski. Skeletal sets
for efficient structure from motion. In CVPR, 2008a.

N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the
world from Internet photo collections. International
Journal of Computer Vision, 80(2):189–210, Novem-
ber 2008b.

Noah Snavely, Steven M. Seitz, and Richard Szeliski.
Photo tourism: Exploring photo collections in 3d. In
SIGGRAPH, pages 835–846, 2006.

Susan Sontag. On Photography. Penguin, 1977.
A. Torralba, R. Fergus, and Y. Weiss. Small codes and

large databases for recognition. In CVPR, 2008.
D. Weinshall, M. Werman, and Y. Gdalyahu. Canonical

views, or the stability and likelihood of images of 3d
objects. In Image Understanding Workshop, 1994.

Yan-Tao Zheng, Ming Zhao, Yang Song, H. Adam,
U. Buddemeier, A. Bissacco, F. Brucher, Tat-Seng
Chua, and H. Neven. Tour the world: Building a
web-scale landmark recognition engine. In CVPR,
2009.


