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Abstract

In this work, we address the issue of geometric verification, with a focus on modeling
large-scale landmark image collections gathered from the internet. In particular, we show
that we can compute and learn descriptive statistics pertaining to the image collection by
leveraging information that arises as a by-product of the matching and verification stages.
Our approach is based on the intuition that validating numerous image pairs of the same
geometric scene structures quickly reveals useful information about two aspects of the
image collection: (a) the reliability of individual visual words and (b) the appearance
of landmarks in the image collection. Both of these sources of information can then be
used to drive any subsequent processing, thus allowing the system to bootstrap itself.
While current techniques make use of dedicated training/preprocessing stages, our ap-
proach elegantly integrates into the standard geometric verification pipeline, by simply
leveraging the information revealed during the verification stage. The main result of
this work is that this unsupervised “learning-as-you-go” approach significantly improves
performance; our experiments demonstrate significant improvements in efficiency and
completeness over standard techniques.

1 Introduction
Our main focus in this work is the issue of geometric verification, which is a fundamental
component of any system that seeks to model large-scale contaminated photo collections
gathered from the internet [1, 6, 19, 22]. Recent years have seen remarkable progress in
this area, and current systems are capable of producing 3D models from city-scale datasets
containing hundreds of thousands, or even millions of images, within a fairly short time
span [1, 6]. In this work, we seek to improve the efficiency of these state of the art approaches
by addressing one of the most computationally expensive operations in this process.

In designing a 3D reconstruction system for internet photo collections, one of the key
considerations is robustness to “clutter” – when operating on datasets downloaded using key-
word searches on community photo sharing websites (such as Flickr), it has been observed
that invariably, a large fraction of images in the collection are unsuitable for the purposes of
3D reconstruction [8, 19]. Thus, one of the fundamental steps in a 3D reconstruction system

c© 2012. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Agarwal, Snavely, Simon, Seitz, and Szeliski} 2009

Citation
Citation
{Frahm, Fite-Georgel, Gallup, Johnson, Raguram, Wu, Jen, Dunn, Clipp, Lazebnik, and Pollefeys} 2010

Citation
Citation
{Raguram, Wu, Frahm, and Lazebnik} 2011

Citation
Citation
{Snavely, Seitz, and Szeliski} 2008

Citation
Citation
{Agarwal, Snavely, Simon, Seitz, and Szeliski} 2009

Citation
Citation
{Frahm, Fite-Georgel, Gallup, Johnson, Raguram, Wu, Jen, Dunn, Clipp, Lazebnik, and Pollefeys} 2010

Citation
Citation
{Kennedy, Chang, and Kozintsev} 2006

Citation
Citation
{Raguram, Wu, Frahm, and Lazebnik} 2011

http://dx.doi.org/10.5244/C.26.77


2 RAGURAM, TIGHE, FRAHM: IMPROVED GEOMETRIC VERIFICATION

is geometric verification: the process of determining which images in an internet photo col-
lection are geometrically related to each other (i.e., images of the same 3D structure). This
is a computationally expensive step; a simple exhaustive pairwise comparison of images
leads to a quadratic algorithm that cannot scale to handle large scale image collections with
hundreds of thousands of images. Thus, much work in recent years has focused on devel-
oping efficient ways to perform this comparison. For example, Agarwal et al. [1] use image
retrieval techniques to determine, for every image in the dataset, a small set of candidate im-
ages to match against. An alternate approach, adopted by Frahm et al. [6], is to first cluster
the images based on global image descriptors, which provides a rough grouping based on
viewpoint, and to then perform the verification within each cluster. These approaches have
proved to be very efficient – for instance, in [6], it was shown that datasets containing up to 3
million images could be processed in approximately 24 hours, leading to dense 3D models.
While this is extremely promising, there are still some limitations. For instance, even the
carefully optimized approach described in [6] spends approximately 50% of the process-
ing time simply verifying image pairs against each other. In addition, the approach in [6]
suffers from “incompleteness”; due to the coarse clustering, a very large fraction of images
are discarded immediately following the clustering and verification steps (for e.g., for some
datasets, over 95% of the images in the collection remain unmatched following these steps).
In this work, we aim to overcome these limitations.

Thus far, the typical way to perform geometric verification has been to estimate the ge-
ometric relationship between pairs independently, which does not fully exploit the specific
characteristics of the dataset being processed. Our main idea in this work is simple: as the
geometric verification progresses, we learn information about the image collection, and sub-
sequently use this learned information to improve efficiency and completeness. More specif-
ically, since images of the same geometric structures are being repeatedly verified against
each other, this process of repeated matching reveals useful information about (a) the sta-
bility and validity of low-level image features and (b) the global appearance of the various
landmarks in the image collection. While current techniques either ignore this information,
or leverage it for other tasks via an offline processing stage, we feed this information directly
back into the verification pipeline. This approach, while simple, is also very effective; our
results demonstrate significant improvements in efficiency compared to current techniques.

2 Related Work
Recent years have seen remarkable advances with respect to the modeling, organization and
visualization of large-scale, heavily contaminated image collections gathered from the in-
ternet. As noted earlier, the recent approaches of [1, 6] are capable of producing 3D re-
constructions of city-scale landmark image collections containing millions of images. To
handle datasets of this magnitude, these approaches have primarily focused on exploiting the
parallelism inherent in the problem, either by using clusters of computers [1] or GPUs [6].
However, far less attention has been paid to redundancy, in that images of the same geomet-
ric structures are verified against each other time and time again. While this cue has gone
mostly ignored, we show that incorporating this information into the standard reconstruction
pipeline can result in a significant computational benefit.

Also relevant to our approach are techniques for the related problem of location recog-
nition, where the goal is to efficiently identify and return images that are geometrically
related to a given query image. Given that efficiency and accuracy are important in this
setting, a number of recent approaches have addressed the problem of learning how to se-
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lect informative image features (or, alternatively, how to suppress uninformative features)
[9, 11, 14, 21, 23]. Also closely related is the work of [13], which uses the output of ge-
ometric verification to learn a probabilistic similarity measure between visual words, thus
linking together words that are likely to be related. While these ideas are very similar in
spirit to ours, our goal is quite different – we aim to utilize this information in an online
way. This is a distinguishing characteristic from current techniques that obtain this infor-
mation via an offline, preprocessing step, or through a post-hoc phase that uses the output
of structure-from-motion. In addition, in contrast to techniques such as [9, 11, 23], which
operate at the feature level , our approach explores the weighting of visual words. In this
respect, our approach is similar to [14], which uses offline training to identify a subset of
the visual vocabulary containing information that is most useful for landmark identification.
However, we do not require a dedicated learning stage or labeled training data.

There has been some recent work related to the problem of identifying landmark images
in large-scale image collections [10, 24, 25]. Our approach differs from these in that we do
not require any manually labeled training imagery, as in [10]. In addition, we do not require
images to have any associated geotags or GPS information, as required in [25], and we also
do not require full structure-from-motion to be carried out on the entire dataset, as in [24].
Indeed, our method is in fact designed to support the structure from motion process and
seamlessly integrate into it.

3 Efficient Large-scale Image Registration
As noted earlier, current approaches take a somewhat pessimistic view to the problem of geo-
metric verification, by independently computing the two-view geometry for each image pair.
In other words, given a pair of images, features are matched between the images to obtain a
set of putative correspondences, and then a robust estimation algorithm (e.g., RANSAC [5],
or one of its more efficient variants) is used to identify a set of inliers. This process then
repeats for the next pair of images, typically ignoring the results produced by any previous
rounds of verification. We adopt a different strategy: our intuition is that repeated verifi-
cation reveals useful information about both the validity of low-level image features (i.e.,
visual words), as well as the appearance of landmark images (i.e., bags of visual words).

3.1 Identifying useful visual words
As a motivating example, consider Figure 1(a), which shows all detected SIFT [12] features
for a single image. Note that a large number of features lie in areas of the image that are very
unlikely to pass any geometric consistency check (for e.g., features on vegetation, people,
and in the sky). Now, if we have previously verified other images of the same scene, we
can weight each visual word in the current image by the number of times that the word has
previously passed the geometric consistency check in other image pairs (see Figure 1(b)).
Note, in particular, that this weighting emphasizes visual words that are stable, reliable, and
more likely to be geometrically consistent (for instance, those in the central portion of the
structure), while also suppressing spurious visual words. Similar ideas have been explored to
some extent in recent work [9, 23], but at the feature-level. Our approach extends this idea in
two ways: (1) we work at the visual word level, which in turn allows us to predict, for a never
before seen image, which features are likely to be geometrically consistent, and (2) since our
goal is geometric verification, we incorporate this visual word prioritization strategy into the
verification step itself (i.e., no preprocessing or labeling of images is required).
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(a) (b)
Figure 1: (a) All detected features for a single image (b) Features filtered based on the results
of geometric verification – only visual words that were inliers in at least 10 previous image
pairs are shown. The features in (b) are heatmap colour coded based on the inlier counts.

3.1.1 Computing visual word priorities

In the interests of computational efficiency, we adopt a very simple strategy to identify po-
tentially useful visual words. Consider a visual vocabulary, W = {w1,w2, ...,wN}, consisting
of N visual words. Typically, this vocabulary is generated by (approximate) k-means cluster-
ing, using a diverse set of image descriptors [17]. In addition, consider a set of visual word
priorities, C = {c1,c2, ...,cN}, where each ci represents a score that is proportional to the va-
lidity of the visual word. In the absence of any prior information, we start by assigning each
of these visual words the same priority (i.e., ci = 0,∀i). We then carry out geometric verifi-
cation on the image collection, selecting image pairs using either the retrieval-based method
as in [1], or the clustering based-method as in [6]. For each pair of images, we match SIFT
features, and then run a robust estimator to identify a set of inliers.

Each pair of matching features is associated with a visual word from the set W (for
simplicity, we ignore for now the case where a pair of matched features gets assigned to
different visual words in each image; we will return to this point later). For every pair of
images that we successfully verify (where a “success” is considered to be a pair of images
with > I inliers; commonly chosen values of I range between 15-20), we then update the
priority of the inlier visual words based on the results of this process. The simplest possible
scheme would consider the set C to be a set of inlier counts – in other words, for each feature
match that was found to be an inlier, we update a count ci for the corresponding visual word.
In the case where the matched points are assigned to different words, we simply update the
counts for both visual words. Intuitively, over time, we expect that these counts will help
identify visual words that are frequently matched as inliers, as well as words that repeatedly
fail the geometric consistency check. Note that the set C is maintained globally and is used
across all image pairs.

3.1.2 Improving RANSAC sampling

One immediate application of the visual word priorities is in improving robust estimation. In
recent years, a number of improvements to RANSAC have been proposed, each addressing a
specific weakness of the original algorithm [2, 3, 15, 18, 20]. Most relevant to this work are
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techniques that perform non-uniform sampling of the data points using some form of prior
information. In our case, this prior comes from the computed visual word priorities.

Assume we are given a set of counts C = {c1,c2, ...,cN}, obtained by matching a set
of image pairs. This weighting of visual words can then be incorporated into a RANSAC
framework that biases the sampling in favour of the more reliable words. Two recent esti-
mators in this category are PROSAC [2], which uses ordering information to preferentially
sample points based on their sorted rank and GroupSAC [15], which partitions points into
groups based on similarity information. Given the set of inlier counts C, it is clear that
this information can very easily be incorporated into a PROSAC-style sampling strategy. In
particular, given a pair of images, consider a set S containing M matched points, xi ↔ x′i,
for i = 1, ...,M. For each matched feature in S, we have a corresponding visual word wi,
with associated count ci. We then order the matches in S based on the counts ci, and then
carry out PROSAC-style sampling. PROSAC can be viewed as a process that starts by deter-
ministically testing the most promising hypotheses (generated from the most promising data
points), and gradually shifting to the sampling strategy of RANSAC as the confidence in the
a priori sorting decreases. Simply put, PROSAC is designed to draw the same samples as
RANSAC, but in a more meaningful order.

It is worth noting that thus far, virtually the only kind of ordering information that has
been used in PROSAC has been purely image-to-image [2, 15, 18, 20]. In other words, given
a set of matched features for an image pair, the ordering of matches is usually determined
using some function of the SIFT matching score (e.g., based on the ratio of the distances in
the SIFT space of the best and second best match). Note that this ordering does not lever-
age any information from prior matching rounds – in other words, each pair of images is
verified completely independently of the others. Particularly for the case of photo collec-
tions, where images of the same 3D scenes are repeatedly encountered, there is much to
be gained by altering the ordering scheme to take prior matching results into account. We
adopt precisely this strategy, sorting the set of matches based on the number of times the
corresponding visual words have been previously verified as being inliers. As we will show
in the results in Section 4, this ordering strategy results in an appreciable improvement in
efficiency compared to the standard image-to-image ordering technique.

3.2 Identifying landmark images
Section 3.1 described an approach that operated at the level of individual visual words. We
now show that it is possible to learn additional useful information that captures higher-level
information. For instance, once we have obtained a sufficiently large set of succesfully ver-
ified image pairs, we hypothesize that this set captures useful information about the global
appearance of various landmarks present in the dataset. More specifically, consider the sys-
tem of [6], which first clusters the images into groups based on (approximate) viewpoint, and
then verifies these viewpoint clusters to obtain a set of iconic images. These iconic images
represent a concise summary of the entire image collection (see [19]), and typically contain a
diverse set of views of the various landmarks in the dataset. We observe that this information
can then be used to train a classifier that distinguishes between landmark and non-landmark
images. One of the limitations of the approach of [6] is that the clustering and verifica-
tion steps are only approximate, and often, a significant fraction of images in the dataset are
rejected as being irrelevant. One possible approach to increasing the number of registered
images is to carry out a second “re-verification” stage, where each rejected image is matched
to a small set of iconics (obtained, for instance, by using image retrieval techniques). How-
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ever, this step is prohibitively expensive, particularly for very large scale image collections,
where the number of rejected images is on the order of a few million. In this context, having
a trained model of landmark appearance is potentially very useful, since this would allow
us to only verify those images that are likely to be landmark images and discard the rest.

We propose the following approach to efficiently increase the number of registered im-
ages: as images are processed in the pipeline described in [6], we identify a subset of these
images as verified landmark images (“iconics”). These images constitute a set of positive
training examples to train a landmark-vs.-non landmark classifier. In order to obtain nega-
tive training examples, we sample randomly from the set of rejected images, and attempt to
register the sampled image against the set of iconics. If this process fails, it is very likely that
the sampled image is a non-landmark image, and we add this to the negative training pool.
This process repeats until a sufficient number (on the order of a few thousand) negative train-
ing images have been found. Following this, we train a simple binary classifier to distinguish
landmark images from non-landmark images. To build this classifier, we leverage our same
visual vocabulary (W ), but now use it to build a standard bag of visual words (a histogram of
the visual words) descriptor for each training image. We use this descriptor to train a linear
support vector machine (SVM) classifier. Once trained, in the re-verification stage, we first
run the classifier on each image before verification. If the classifier has a positive response
we continue with geometric verification, but if the response is negative we reject the image
immediately, thus significantly reducing the overall compute time.

4 Results

4.1 Robust estimation

We first evaluate the effect of the modified ordering scheme based on visual words counts
(3.1.2) on the robust estimation stage. We use a high-performance RANSAC variant called
ARRSAC [18], which integrates PROSAC-style sampling into a real-time robust estimation
framework. We report results on two experiments, representing different usage scenarios:
Experiment 1: We consider a dataset of 10000 images representing a single landmark (down-
loaded by doing a keyword search for “Berlin Dome” on Flickr). This dataset is relatively
clean, though a small fraction (≈ 5%) of unrelated images are present in the dataset. We pro-
cess this dataset using the approach of [1], by retrieving 20 match candidates for each image
in the dataset, and performing geometric verification. We compare the performance of three
estimators: (a) baseline RANSAC (denoted as R1) (b) ARRSAC with ordering based on
SIFT matching scores (R2) and (c) ARRSAC with the proposed ordering based on visual
words (R3). The only difference between R2 and R3 is in the ordering used to prioritize
matches. In all cases, we estimate the epipolar geometry using the 7-point algorithm [7].
For this experiment, we use a visual vocabulary with 20,000 words, computed by k-means
clustering using a set of randomly chosen descriptors from the dataset.
Experiment 2: In this experiment, we process a much larger dataset, consisting of 2.77 mil-
lion images of Berlin, obtained from [6]. To handle datasets of this magnitude, we use the
clustering based approach described in [6], which is capable of scaling well to these larger
datasets. We extract binarized gist features for each image, and then cluster using k-medoids
with k = 100000 centers. We then perform geometric verification independently on each
cluster, by first trying to identify a set of m (=3, in our experiments) consistent images in
each cluster, denoting the image with the most inliers as the “iconic”. We then register all
remaining images in the cluster to this iconic. Compared to the approach used for Experi-
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Table 1: Experiment 1 (BerlinDome-10k)
R1 R2 R3

Mean time per 389.6 41.2 28.9
image pair (ms)

Mean # of hypotheses 14218.4 604.1 399.7
per image pair
Total runtime 23:48 04:08 03:16

(hours:minutes)

Table 2: Experiment 2 (Berlin-2.77M)
R2 R3

Mean time 26.7 18.8
per image pair (ms)

Total runtime 02:50 02:28
(hours:minutes)

# iconics 9841 9912
# registered images 132,719 133,830

ment 1, this strategy dramatically reduces the total number of pairwise image verifications
that need to be performed [6]. For this experiment, we compare the performance of R2 and
R3, since RANSAC (R1) is impractical for datasets of this size. In this case, we use a larger
vocabulary with 106 visual words, computed using approximate k-means clustering [17].

In all cases, note that there is no dedicated “training” phase for R3. Initially, we start
with all visual word priorities set to zero, and then progressively accumulate inlier counts.
As the matching progresses, the efficiency of R3 increases rapidly, and after verifying about
500 pairs on average, it becomes more efficient than the matching score based ordering.
This is an empirical observation at this stage, and investigating this progression in more
detail is an interesting direction for future work. In the results we report, for method R3,
we start by using the matching score based ordering, and then switch over to the visual
word based ordering after 500 image pairs. The results for the two experiments are shown
in Tables 1 and 2. For the smaller BerlinDome-10k dataset, it can be seen that the new
ordering scheme improves on the runtime of the matching score based ordering by about
30%. This provides strong evidence that using information accumulated during the matching
process helps improve efficiency. For Expt. 1, we do not distribute our processing across
multiple CPU/GPU cores; thus, the reported total runtime is for a single thread. For the large-
scale Berlin-2.77M dataset, much the same trend holds for the per-image pair estimation
time, which indicates that the weighting based on visual words is still reliable even with the
presence of multiple landmarks in the dataset. It can be seen that the mean time to verify
a single image pair is reduced compared to the results in Table 1; this is a consequence
of the viewpoint-based clustering which increases the mean inlier ratio by grouping similar
images in the same cluster. Finally, the overall runtime numbers reported in Table 2 are for
a parallel implementation that distributes image pairs across 16 CPU threads for geometric
verification. Note that the overall runtimes are not directly comparable between Tables 1 and
2, since these use two different strategies ([1, 6]) to perform the verification.

A specific example is shown in Figure 2(a).The inlier ratio for this image pair is sig-
nificantly low (≈ 20%), due to large changes in viewpoint and scale, coupled with repeti-
tive patterns and symmetries. For this low inlier ratio, standard RANSAC requires close to
1.07×106 samples, which is computationally prohibitive. ARRSAC with feature matching
scores requires about 22000 samples, while ARRSAC with visual word ordering takes 595
samples, which represents a 36x improvement compared to ordering using matching scores.

4.2 Landmark classification
As noted earlier, one of the limitations of the approach in [6], is that a significant fraction
of images are discarded following the clustering and verification stage. On the large scale
Berlin dataset, observe from Table 2 that only ≈ 5% of the entire dataset has been registered
at this point. Thus, to increase completeness and coverage, we now wish to run geometric
verification in order to attempt to register as much as possible of the remaining 95% of the
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(a) (b)
Figure 2: (a) Putative features matches and (b) inliers. In this case, the inlier ratio is ≈ 20%.

Positive Training Images (”Iconic” Images)

Negative Training Images (Rejected Images)

Figure 3: A random sample of the training set derived from the first stage of verification.

dataset, against the iconic images that we have identified. This, however, is a very slow
process, since most image pairs will fail verification (note that when performing robust esti-
mation, failed verifications are much slower than successful verifications). Thus, to reduce
the number of images that need to be verified, we use our linear SVM classifier (Section 3.2)
to first weed out images that do not visually resemble landmark images.

To train our SVM classifier, we take positive and negative training images as described
in Section 3.2, resulting in 9,471 positive and 10,529 negative training images. A sample of
this training set can be seen in Figure 3. Since this training set is derived from the verification
step, rather than a manual labeling, it does have a small fraction of non-landmark images in
the positive set as well as landmark images in the negative set. What is interesting, however,
is the trained classifier seems to be robust to this incorrect training data and is able to, at least
partially, exclude non-landmark images from being incorrectly verified (refer Figure 4).

For each image we compute a bag-of-visual-words histogram using the 106 word vo-
cabulary (Sec. 4.1). Since, on average there are ≈ 2,000 visual words per image, and our
histogram has one million dimensions, our feature vectors are very sparse. We take advan-
tage of this sparsity at training time by using the very fast linear SVM library of Fan et al. [4].
We use the coordinate descent dual-based solver to solve the L2-regularized L2-loss SVM
objective function and use five-fold cross validation on the training set to find the normal-
ization constant (C), the only parameter for the SVM, by finding the parameter setting that
gives the highest average classification rate (see [4] for details). We are able to cross-validate
and train our SVM on 20,000 training images with one million dimensional feature vectors
in 312 seconds. At test time, the classifier evaluation is a sparse inner product which, for
our problem, amounts to on average 2,000 addition operations. In our tests, evaluating the
classifier on an image took less than 10−6 seconds, which is orders of magnitude faster than
full geometric verification.
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Figure 4: The top and bottom ten images (according to classifier scores) that geometrically
verify to some iconic image. Notice that, though the lowest scoring images do verify, it is
actually useful that the classifier rejected them, since these images are mostly not landmarks.

Table 3: Re-verification statistics (Berlin-2.77M)
Full re-verification SVM + re-verification

Number of newly registered images 273,639 202,538
Total runtime (days:hours:mins) 01:10:26 00:10:43

To measure the accuracy of our classifier, we create a test set of 44,289 images by running
geometric verification on a random subset of the images that have yet to be verified. For
positive test examples, we take images that are successfully registered to an iconic image
and for negative examples, we choose images that do not verify to any iconic image. After
this process we have 5,119 positive and 39,170 negative test images. We would like our
classifier to have a number of favourable properties. First, we would like it to not miss too
many images that would successfully verify against an iconic image. To measure this, we
look at the true positive rate, which on our test set is 69.5%. While this might seem low at
first glance, we have found that, while the images the classifier rejected do verify to some
iconic, they are most often not “truly” landmark images (refer to Figure 4). This discrepancy
arises from the fact that non-landmark images can be present in the set of iconics, if groups of
geometrically consistent non-landmark photos exist in the dataset (these usually correspond
to groups of near-duplicate images taken by a single user and often incorrectly tagged). As
a second property of our classifier, we would like the total number of images for which our
classifier has a positive response to, and for which we then run geometric verification on, to
be low. Our classifier has a positive response to 25.9% of test images, allowing 74.1% of
images to be rejected without verification, amounting to at least a 4x speed up.

Table 3 reports results for this approach on the Berlin-2.77M dataset. We start with
2,638,136 unregistered images, and perform re-verification. To do so, we compare two ap-
proaches: (a) full re-verification, where we retrieve 20 iconics for each unregistered im-
age (using vocabulary-tree based image retrieval [16]), and then perform geometric verifica-
tion; and (b) SVM + re-verification, where we first classify an unregistered image as being
landmark/non-landmark, and then only verify the landmark images. It can be seen from
Table 3 that incorporating the learned model of appearance into the re-verification stage re-
duces the overall runtime by ≈ 70%. There is a trade-off, however: doing so reduces the
number of registered images by about 26%. Note that these numbers are in close agreement
with those predicted from the SVM test set. In future work, we plan to investigate the impact
of these missed images in the context of a complete 3D reconstruction.
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5 Conclusion
In this paper, we have presented techniques for taking advantage of the information generated
during geometric verification, to improve the overall efficiency of the process. We show that
reliable statistics can be computed on both the visual-word level, as well as at an image-level.
Our approach thus integrates online knowledge extraction seamlessly into structure-from-
motion systems, and is particularly relevant for large-scale image collections. Our results
demonstrate both improved efficiency, as well as higher image registration performance,
potentially yielding more complete 3D models for these large-scale datasets.
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[3] Ondřej Chum and Jiří Matas. Optimal Randomized RANSAC. IEEE Trans. Pattern
Anal. Mach. Intell., 30(8):1472–1482, 2008.

[4] Rong-en Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-rui Wang, and Chih-jen Lin. LI-
BLINEAR: A library for large linear classification. The Journal of Machine Learning
Research, 9:1871–1874, 2008.

[5] Martin A. Fischler and Robert C. Bolles. Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated Cartography.
Communications of the ACM, 24(6):381–395, 1981.

[6] Jan-Michael Frahm, Pierre Fite-Georgel, David Gallup, Tim Johnson, Rahul Raguram,
Changchang Wu, Yi-Hung Jen, Enrique Dunn, Brian Clipp, Svetlana Lazebnik, and
Marc Pollefeys. Building Rome on a Cloudless Day. In European Conference on
Computer Vision, volume 6314, pages 368–381, 2010.

[7] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, 2000.

[8] L. Kennedy, S.-F. Chang, and I. Kozintsev. To Search or To Label?: Predicting the
Performance of Search-based Automatic Image Classifiers. In ACM Multimedia Infor-
mation Retrieval Workshop (MIR 2006), 2006.

[9] Jan Knopp, Josef Sivic, and Tomas Pajdla. Avoiding confusing features in place recog-
nition. In European Conference on Computer vision, pages 748–761, 2010.

[10] Yunpeng Li, D.J. Crandall, and D.P. Huttenlocher. Landmark classification in large-
scale image collections. In International Conference on Computer Vision, pages 1957
–1964, 2009.



RAGURAM, TIGHE, FRAHM: IMPROVED GEOMETRIC VERIFICATION 11

[11] Yunpeng Li, Noah Snavely, and Daniel P. Huttenlocher. Location recognition using
prioritized feature matching. In European Conference on Computer vision, pages 791–
804, 2010.

[12] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. Interna-
tional Journal of Computer Vision, 60:91–110, 2004.
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